[发明专利]稀疏自编码滚动轴承故障诊断方法有效
| 申请号: | 201910536120.6 | 申请日: | 2019-06-20 |
| 公开(公告)号: | CN110346141B | 公开(公告)日: | 2020-11-27 |
| 发明(设计)人: | 时培明;郭晓慈;韩东颖;付荣荣 | 申请(专利权)人: | 燕山大学 |
| 主分类号: | G01M13/045 | 分类号: | G01M13/045 |
| 代理公司: | 北京孚睿湾知识产权代理事务所(普通合伙) 11474 | 代理人: | 孙建 |
| 地址: | 066004 河北省*** | 国省代码: | 河北;13 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开一种稀疏自编码滚动轴承故障诊断方法,其具体包括以下步骤:S1、采集滚动轴承的各故障状态下的原始振动数据,通过压缩感知分别将每种振动数据进行线性投影,并将各故障类型线性投影后的压缩信号合并成多故障类型的低维压缩信号矩阵;S2、确定多故障类型的低维压缩信号矩阵的小波包能量熵,形成轴承故障诊断的特征向量矩阵;S3、将滚动轴承的多故障类型下的特征向量矩阵输入到稀疏自动编码器中进行训练,进一步提取输入层到隐含层的权重作为特征矩阵;S4、将稀疏自动编码神经网络提取到的特征通过神经网络分类器进行分类,完成对滚动轴承的故障诊断分类。本发明降低了诊断复杂度,缩短了诊断时间,同时也保证了较高的诊断精度。 | ||
| 搜索关键词: | 稀疏 编码 滚动轴承 故障诊断 方法 | ||
【主权项】:
1.一种稀疏自编码滚动轴承故障诊断方法,其特征在于:其具体包括以下步骤:S1、采集滚动轴承健康状态以及轻微内环故障、严重内环故障、轻微外环故障、严重外环故障、轻微滚动体故障和严重滚动体故障的振动数据,各自进行分割截取,构建数据样本集,通过压缩感知分别将数据样本集中每种振动数据进行线性投影,并将各线性投影后的低维压缩信号合并成多故障类型的低维压缩信号矩阵,具体为:截取滚动轴承健康状态下的长度为N的振动信号,记为x,看作RN中N×1列向量,x∈RN在某个正交基Ψ上的变换系数是稀疏的或可压缩的,并且Ψ可以展开成一个标准正交基Ψ=[ψ1,ψ2,...,ψN],如下式:
其中,a是x序列的系数,
信号x在测量矩阵Φ∈RM×N(M<<N)进行线性投影得到线性压缩值y∈RM,y的维度为M×1,其中M=N×C,C表示压缩率,线性投影过程由下式表示:y=Φx选取随机高斯矩阵作为测量矩阵,
其中i=1…M,j=1…N,这个过程为信号的线性测量,得到的y为健康状态轴承振动信号经压缩采集的低维压缩值;依次截取滚动轴承的轻微内环故障x1、严重内环故障x2、轻微外环故障x3、严重外环故障x4、轻微滚动体故障x5和严重滚动体故障x6的振动信号,并分别进行如上线性投影过程,得到各故障状态下的低维压缩信号分别表示为:y1、y2、y3、y4、y5、y6;S2、确定多故障类型的低维压缩信号矩阵的小波包能量熵,形成轴承故障诊断的特征向量矩阵,具体为:先将低维压缩信号y和进行L层小波包分解得到小波包分解序列以及低维压缩信号的频带能量占比数组,利用MATLAB中确定小波包能量熵函数wppower,其调用格式为:H=wppower(Y,L),设置小波包分解层数为L,L为正整数,H是频带能量熵矩阵;用健康状态的小波包能量熵H以及轻微内环故障、严重内环故障、轻微外环故障、严重外环故障、轻微滚动体故障和严重滚动体故障状态的低维压缩信号yi(i=1…6)的小波包能量熵矩阵Hi(i=1…6)构成特征向量矩阵train_x;依次截取滚动轴承健康状态X、轻微内环故障X1、严重内环故障X2、轻微外环故障X3、严重外环故障X4、轻微滚动体故障X5、严重滚动体故障X6的与步骤S1不同段但长度均为N的振动信号,重复步骤S1和步骤S2得到小波包能量熵矩阵h、hi(i=1…6)构成的特征向量矩阵test_x;S3、将滚动轴承的多故障类型下的特征向量矩阵输入到稀疏自动编码器中进行训练,进一步提取输入层到隐含层的权重作为特征矩阵;S4、将稀疏自动编码神经网络提取到的特征通过神经网络分类器进行分类,完成对滚动轴承的故障诊断分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910536120.6/,转载请声明来源钻瓜专利网。





