[发明专利]中文分词方法、电子装置及可读存储介质在审
申请号: | 201910371045.2 | 申请日: | 2019-05-06 |
公开(公告)号: | CN110287961A | 公开(公告)日: | 2019-09-27 |
发明(设计)人: | 金戈;徐亮 | 申请(专利权)人: | 平安科技(深圳)有限公司 |
主分类号: | G06K9/34 | 分类号: | G06K9/34;G06K9/62;G06N3/04 |
代理公司: | 北京鸿元知识产权代理有限公司 11327 | 代理人: | 袁文婷;王迎 |
地址: | 518033 广东省深圳市福田区福*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及数据分析技术领域,具体提供一种基于卷积神经网络模型的中文分词方法、电子装置及可读存储介质,该卷积神经网络模型的第四层卷积层构建有注意力机制,注意力机制用于调整各通道权重。本发明提供的中文分词方法,首先获取字向量字典,通过字向量字典将第二文本转化为训练信息,然后根据训练信息训练卷积神经网络模型,最后卷积神经网络模型根据输入的文本进行字符边界识别预测。通过卷积神经网络模型进行分词,消耗的资源更少,分词速度快,正确率高。在上述卷积神经网络模型的第四层卷积层处构建有注意力机制,在训练卷积神经网络模型时,该注意力机制的设置能够优化卷积神经网络模型,提高卷积神经网络模型预测的准确率。 | ||
搜索关键词: | 卷积神经网络 注意力机制 中文分词 可读存储介质 电子装置 训练信息 分词 构建 卷积 向量 字典 数据分析技术 模型预测 文本转化 字符边界 正确率 准确率 权重 文本 消耗 预测 优化 | ||
【主权项】:
1.一种基于卷积神经网络模型的中文分词方法,其特征在于,包括如下步骤:第一步:获取文字字典,去除所述文字字典中的特殊符号和非中文字符,将所述文字字典中的各文字分隔为单独文字形式的文字,所述单独文字形式的文字的集合为第一训练文本;第二步:通过字向量训练将所述第一训练文本转化为字向量形式的第一字向量训练文本,根据所述第一训练文本和所述第一字向量训练文本确定字向量字典,所述字向量字典中记录有文字与字向量的对应关系;第三步:获取带有分词标注的第二训练文本,根据所述字向量字典将所述第二训练文本转化为字向量形式的训练信息;第四步:根据预设的交叉熵损失函数和ADAM优化算法以及所述训练信息,对所述卷积神经网络模型进行训练;第五步:根据所述卷积神经网络模型的训练结果对输入的待分词的文本进行字符边界识别预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于平安科技(深圳)有限公司,未经平安科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910371045.2/,转载请声明来源钻瓜专利网。