[发明专利]一种基于特定语义的图表示学习框架及其多标签分类方法有效
申请号: | 201910324960.6 | 申请日: | 2019-04-22 |
公开(公告)号: | CN110084296B | 公开(公告)日: | 2023-07-21 |
发明(设计)人: | 林倞;惠晓璐;陈添水;许慕欣;王青 | 申请(专利权)人: | 中山大学 |
主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/82;G06N3/042;G06N3/0442;G06N3/045;G06N3/0464;G06N3/048;G06N3/08;G06N5/022 |
代理公司: | 广州容大知识产权代理事务所(普通合伙) 44326 | 代理人: | 刘新年 |
地址: | 510275 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于特定语义的图表示学习框架及其多标签分类方法,该框架包括:语义结耦模块,用于利用卷积神经网络对输入图像提取图像特征,将图像特征与语义特征相结合,并引入注意机制,利用语义特征引导图像特征权重的学习,并作用于图像特征,得到新的特征向量;语义交互模块,用于先通过构建知识图谱统计数据集中类别共存的关联性来构建大型知识图谱,再利用一个门图网络来对知识图谱进行特征表达,迭代的更新知识图谱得到知识图谱的特征表示;知识嵌入表达模块,用于将所述语义交互模块知识表达学习到的特征表示与所述语义结耦模块提取的图像特征学习相结合,以实现多标签分类。 | ||
搜索关键词: | 一种 基于 特定 语义 图表 学习 框架 及其 标签 分类 方法 | ||
【主权项】:
1.一种基于特定语义的图表示学习框架,包括:语义结耦模块,用于利用卷积神经网络对输入图像提取图像特征,将图像特征与语义特征相结合,并引入注意机制,利用语义特征引导图像特征权重的学习,并作用于图像特征,得到新的特征向量;语义交互模块,用于先通过构建知识图谱统计数据集中类别共存的关联性来构建大型知识图谱,再利用一个门图网络来对知识图谱进行特征表达,迭代的更新知识图谱得到知识图谱的特征表示;知识嵌入表达模块,用于将所述语义交互模块知识表达学习到的特征表示与所述语义结耦模块提取的图像特征学习相结合,以实现多标签分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910324960.6/,转载请声明来源钻瓜专利网。