[发明专利]一种多组合智能化模型的青椒温室温度智能化预警装置有效

专利信息
申请号: 201910320146.7 申请日: 2019-04-19
公开(公告)号: CN110119766B 公开(公告)日: 2022-05-27
发明(设计)人: 王建国;马从国;马晨雷;郑文涛;陈亚娟;杨玉东;丁晓红 申请(专利权)人: 淮阴工学院
主分类号: G06K9/62 分类号: G06K9/62;G06Q10/04;G06Q50/02;G08B21/18;H04L12/40;G01D21/02;G05D27/02;G16Y10/05;G16Y20/10;G16Y40/10;G16Y40/20;G16Y40/30
代理公司: 淮安市科文知识产权事务所 32223 代理人: 李锋
地址: 223005 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种多组合智能化模型的青椒温室温度智能化预警装置,所述预警装置由基于CAN现场总线的青椒温室环境参数采集平台和青椒温室温度智能预警系统两部分组成;本发明不但有效解决了传统青椒温室环境由于设计不合理、设备落后、控制系统不完善等原因导致密闭式青椒温室内环境仍存在许多问题,而且有效解决了现有的青椒温室环境监测系统,没有根据青椒温室环境温度变化的非线性、大滞后和青椒温室面积大温度变化复杂等特点,对青椒温室环境的温度进行融合与预警,从而极大的影响青椒温室环境温度的调控问题。
搜索关键词: 一种 组合 智能化 模型 青椒 温室 温度 预警 装置
【主权项】:
1.一种多组合智能化模型的青椒温室温度智能化预警装置,其特征在于:所述预警装置由基于CAN现场总线的青椒温室环境参数采集平台和青椒温室温度智能预警系统两部分组成;青椒温室温度智能预警系统包括青椒温室温度预测子系统、青椒温室湿度预测子系统、青椒温室风速预测子系统、青椒温室温度校正模型和HRFNN递归神经网络青椒温室温度等级分类器;所述青椒温室温度预测子系统包括青椒温室环境温度减法聚类分类器、多个HRFNN递归神经网络温度预测模型、HRFNN递归神经网络青椒温室温度预测融合模型;青椒温室多个温度检测点的温度值为青椒温室环境温度减法聚类分类器的输入,青椒温室环境温度减法聚类分类器把青椒温室多个温度检测点的温度值分为多个类型,青椒温室多个温度检测点的多个类型温度值分别作为多个HRFNN递归神经网络温度预测模型的输入,多个HRFNN递归神经网络温度预测模型的输出分别为青椒温室各个温度类型的温度预测值,HRFNN递归神经网络青椒温室温度预测融合模型实现对青椒温室各个温度类型的温度预测值进行融合得到青椒温室温度预测值;所述青椒温室湿度预测子系统包括青椒温室湿度经验模态(EMD)分解模型、多个最小二乘支持向量机(LS‑SVM)湿度预测模型和ANFIS神经网络青椒温室湿度预测融合模型;青椒温室湿度检测数据作为青椒温室湿度经验模态(EMD)分解模型的输入,青椒温室湿度经验模态(EMD)分解模型把青椒温室湿度历史数据分解为低频趋势部分和多个高频波动部分,青椒温室湿度历史数据的低频趋势部分和多个高频波动部分分别作为多个最小二乘支持向量机(LS‑SVM)湿度预测模型的输入,多个最小二乘支持向量机(LS‑SVM)湿度预测模型分别预测得到青椒温室湿度的低频趋势部分和多个高频波动部分的预测值,ANFIS神经网络青椒温室湿度预测融合模型的输入为低频趋势部分和多个高频波动部分的预测值,ANFIS神经网络青椒温室湿度预测融合模型的输出为青椒温室湿度的预测值;所述青椒温室风速预测子系统包括青椒温室风速经验模态(EMD)分解模型、多个ANFIS神经网络风速预测模型和最小二乘支持向量机(LS‑SVM)青椒温室风速预测融合模型;青椒温室风速检测数据作为青椒温室风速经验模态(EMD)分解模型的输入,青椒温室风速经验模态(EMD)分解模型把青椒温室风速检测数据分解为低频趋势部分和多个高频波动部分,青椒温室风速检测数据的低频趋势部分和多个高频波动部分分别为多个ANFIS神经网络风速预测模型的输入,多个ANFIS神经网络风速预测模型的输出分别为青椒温室风速检测数据的低频趋势部分和多个高频波动部分的预测值,最小二乘支持向量机(LS‑SVM)青椒温室风速预测融合模型对青椒温室风速检测数据的低频趋势部分和多个高频波动部分的预测值进行融合得到青椒温室风速预测值;所述青椒温室温度校正模型由6个微分算子S和最小二乘支持向量机(LS‑SVM)组成,6个微分算子S平均分成3组,每组2个微分算子S相串联分别构成微分回路1和微分回路2以及微分回路3;青椒温室温度预测子系统的输出作为微分回路1的输入和最小二乘支持向量机(LS‑SVM)I端的输入,微分回路1的2个微分算子S的连接端的输出为最小二乘支持向量机(LS‑SVM)B端的输入,微分回路1的输出为最小二乘支持向量机(LS‑SVM)A端的输入;青椒温室湿度预测子系统的输出作为微分回路2的输入和最小二乘支持向量机(LS‑SVM)C端的输入,微分回路2的2个微分算子S的连接端的输出为最小二乘支持向量机(LS‑SVM)D端的输入,微分回路2的输出为最小二乘支持向量机(LS‑SVM)E端的输入;青椒温室风速预测子系统的输出作为微分回路3的输入和最小二乘支持向量机(LS‑SVM)F端的输入,微分回路3的2个微分算子S的连接端的输出为最小二乘支持向量机(LS‑SVM)J端的输入,微分回路3的输出为最小二乘支持向量机(LS‑SVM)K端的输入;最小二乘支持向量机(LS‑SVM)由9个输入端节点分别为I、A、B、C、D、E、F、J和K,20个中间节点和1个输出端节点组成,青椒温室温度校正模型实现对青椒温室湿度和风速对青椒温室温度影响程度的校正;所述HRFNN递归神经网络青椒温室温度等级分类器根据青椒温室温度校正模型输出青椒温室温度测值的大小、青椒种类和青椒生长阶段作为HRFNN递归神经网络青椒温室温度等级分类器的输入,HRFNN递归神经网络青椒温室温度等级分类器的输出把青椒温室温度分为青椒温室温度过高、青椒温室温度比较高、青椒温室温度良好、青椒温室温度低和青椒温室温度很低五个青椒温室温度等级。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于淮阴工学院,未经淮阴工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910320146.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top