[发明专利]经验模态分解剩余信号特征的滚动轴承故障智能识别方法有效

专利信息
申请号: 201910298913.9 申请日: 2019-04-15
公开(公告)号: CN110044623B 公开(公告)日: 2020-09-22
发明(设计)人: 刘永葆;李俊;余又红;贺星 申请(专利权)人: 中国人民解放军海军工程大学
主分类号: G01M13/045 分类号: G01M13/045
代理公司: 武汉宇晨专利事务所 42001 代理人: 王敏锋
地址: 430033 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明经验模态分解剩余信号特征的滚动轴承故障智能识别方法,所述方法是结合经验模态分解剩余信号的能量特征和振动信号的时域特征,利用遗传算法优化支持向量机参数的网络模型进行滚动轴承故障模式进行智能识别。本发明结合了经验模态分解剩余信号的能量特征和振动信号的时域特征,利用遗传算法优化支持向量机参数的网络模型用于轴承故障诊断,实验结果表明在小样本情况的基础上,能够更加精准地识别滚动轴承的故障类型,为滚动轴承故障的模式识别和智能诊断提供了帮助。
搜索关键词: 经验 分解 剩余 信号 特征 滚动轴承 故障 智能 识别 方法
【主权项】:
1.经验模态分解剩余信号特征的滚动轴承故障智能识别方法,其特征在于:所述方法是结合经验模态分解剩余信号的能量特征和振动信号的时域特征,利用遗传算法优化支持向量机参数的网络模型进行滚动轴承故障模式智能识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军海军工程大学,未经中国人民解放军海军工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910298913.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top