[发明专利]一种滑坡形变预测方法在审

专利信息
申请号: 201910289303.2 申请日: 2019-04-11
公开(公告)号: CN110059392A 公开(公告)日: 2019-07-26
发明(设计)人: 纪元法;姚鹏远;孙希延;邓洪高;付文涛;庾新林;纪春国;陈奇东;张风国;赵松克;符强;王守华;黄建华;杜保强 申请(专利权)人: 桂林电子科技大学
主分类号: G06F17/50 分类号: G06F17/50
代理公司: 北京中济纬天专利代理有限公司 11429 代理人: 石燕妮
地址: 541004 广西*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种滑坡形变预测方法,获取滑坡体累积位移量原始数据,得到累积位移量原始数据序列;对所述累积位移量原始数据序列进行预处理;将预处理后的累积位移量原始数据序列输入粒子群优化灰色Verhulst模型,得到累积位移量初始预测数据序列;计算累积位移量初始预测数据的残差,得到初始预测数据残差序列;马尔可夫链修正所述初始预测数据残差序列,根据修正后的初始预测数据残差序列计算得到最终预测数据序列。本发明使用的灰色Verhulst模型相比于原始的灰色Verhulst模型进行了改进,采用粒子群算法对灰色Verhulst模型的参数值进行优化,利用滑动窗对原始数据序列进行动态更新,使用马尔可夫链修正模型的残差,模型预测精度有较大提高。
搜索关键词: 累积位移量 预测数据 残差 原始数据序列 预处理 马尔可夫链 形变 滑坡 粒子群算法 粒子群优化 修正 动态更新 模型预测 修正模型 序列计算 原始数据 滑动窗 滑坡体 预测 优化 改进
【主权项】:
1.一种滑坡形变预测方法,其特征在于,包括:获取滑坡体累积位移量原始数据,得到累积位移量原始数据序列;对所述累积位移量原始数据序列进行预处理;将预处理后的累积位移量原始数据序列输入粒子群优化灰色Verhulst模型,得到累积位移量初始预测数据序列;计算累积位移量初始预测数据的残差,得到初始预测数据残差序列;马尔可夫链修正所述初始预测数据残差序列,根据修正后的初始预测数据残差序列计算得到最终预测数据序列。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910289303.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top