[发明专利]基于飞机航迹特征的智能机型识别方法有效

专利信息
申请号: 201910245807.4 申请日: 2019-03-28
公开(公告)号: CN110018453B 公开(公告)日: 2023-05-23
发明(设计)人: 徐雄;王成刚;赵文彬;李思奇 申请(专利权)人: 西南电子技术研究所(中国电子科技集团公司第十研究所)
主分类号: G01S7/41 分类号: G01S7/41
代理公司: 成都九鼎天元知识产权代理有限公司 51214 代理人: 古波
地址: 610036 四川*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出一种基于飞机航迹特征的智能机型识别方法,旨在提供一种识别准确,具有较强的抗干扰能力的智能机型识别方法。本发明通过下述技术方案予以实现:建立航迹序列样本库,将每条航迹的航迹信息作为机型识别的识别样本;通过数据预处理模块对航迹历史数据进行提取及数据预处理,对数据样本进行整理,剔除一些野值并插值,构建基于深度卷积神经网络的深度学习模型,经过样本训练和和测试后形成目标识别分类器,进而应用训练深度学习分类器进行精细分类,最后通过用测试样本对训练出的模型进行测试,结合目标特征的航迹关联对模型的正确率进行评估;利用深度学习分类算法进行机型识别,通过智能算法模型获取分类结果,得出飞机目标的机型类别。
搜索关键词: 基于 飞机 航迹 特征 智能 机型 识别 方法
【主权项】:
1.一种基于飞机航迹特征的智能机型识别方法,具有如下技术特征:采集不同机型类别飞机的历史飞行过程中的经度、纬度、高度、速度、航向的时空特征和运动特征,建立航迹序列样本库,将每条航迹的航迹信息作为机型识别的识别样本,并将人工标注的飞机机型类别作为标签;通过数据预处理模块对航迹历史数据进行提取及数据预处理,对数据样本进行整理,剔除一些野值并插值、数据标准化、航迹序列等长化,构建基于深度卷积神经网络的深度学习模型,经过样本训练和和测试后形成目标识别分类器,进而应用训练深度学习分类器进行精细分类,最后通过用测试样本对训练出的模型进行测试,结合目标特征的航迹关联对模型的正确率进行评估;利用深度学习分类算法进行机型识别,通过智能算法模型获取分类结果,得出飞机目标的机型类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南电子技术研究所(中国电子科技集团公司第十研究所),未经西南电子技术研究所(中国电子科技集团公司第十研究所)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910245807.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top