[发明专利]基于深度学习的动态人脸情绪识别方法有效

专利信息
申请号: 201910242066.4 申请日: 2019-03-28
公开(公告)号: CN110084122B 公开(公告)日: 2022-10-04
发明(设计)人: 吴家皋;张华杰;陈欣宇;周峻全 申请(专利权)人: 南京邮电大学
主分类号: G06V40/16 分类号: G06V40/16;G06V10/774;G06V10/764;G06N3/04;G06N3/08
代理公司: 南京苏科专利代理有限责任公司 32102 代理人: 姚姣阳
地址: 210003 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明揭示了一种基于深度学习的动态人脸情绪识别方法,包括如下步骤:S1、获取人脸图像序列;S2、使用VGG卷积神经网络提取所述人脸图像序列中的每一张图像的图像特征;S3、使用LSTM循环神经网络,结合S2中提取的所述图像特征,识别人脸情绪;S4、使用损失函数对网络进行反复训练,优化网络参数,构建完整的动态人脸情绪识别模型;本发明着眼于动态人脸情绪的分析,通过采集人脸图像序列进行分析的方式,有效地兼顾到了人类情绪阶段化的特点。同时,本发明通过将VGG卷积神经网络和LSTM循环神经网络相结合的方式完成了对人脸图像序列的处理,显著地提升了情绪识别的准确率。
搜索关键词: 基于 深度 学习 动态 情绪 识别 方法
【主权项】:
1.一种基于深度学习的动态人脸情绪识别方法,其特征在于,包括如下步骤:S1、获取人脸图像序列;S2、使用VGG卷积神经网络提取所述人脸图像序列中的每一张图像的图像特征;S3、使用LSTM循环神经网络,结合S2中提取的所述图像特征,识别人脸情绪;S4、使用损失函数对网络进行反复训练,优化网络参数,构建完整的动态人脸情绪识别模型;S5、利用所述动态人脸情绪识别模型,实现对人脸情绪的识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910242066.4/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top