[发明专利]基于电力营销数据的违规用电行为预测方法在审

专利信息
申请号: 201910222802.X 申请日: 2019-03-22
公开(公告)号: CN110288114A 公开(公告)日: 2019-09-27
发明(设计)人: 方舟;裘炜浩;程清;牟黎;陈逍潇;季超;吴恺源;裴旭斌;王以良;龚康家;周后盘 申请(专利权)人: 国网浙江省电力有限公司信息通信分公司;杭州电子科技大学
主分类号: G06Q10/04 分类号: G06Q10/04;G06Q50/06;G06N3/04;G06N3/08
代理公司: 杭州华鼎知识产权代理事务所(普通合伙) 33217 代理人: 项军
地址: 310007*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提出了基于电力营销数据的违规用电行为预测方法,包括从电力营销数据库中获取用户用电数据,对用户用电数据进行处理,得到用户用电相关系数矩阵,对获取到的系数矩阵进行整理得到用户用电数据表;构建卷积神经网络模型;将用户用电数据表划分为训练数据集和测试参数集,基于训练数据集对卷积神经网络模型进行训练,将测试参数集导入训练后的卷积神经网络模型中进行违规用电行为预测。从电力用户最近若干个月的用电数据中提取关键信息对该用户是否正在违规用电进行预测,通过根据以往电量使用的规律来判断该用户是否违规,能够提升判定的准确性。
搜索关键词: 违规 卷积神经网络 电力营销 用电行为 用户用电 用户用电数据 训练数据集 预测 测试参数 系数矩阵 电力用户 电量使用 关键信息 用电数据 构建 判定 数据库 申请
【主权项】:
1.基于电力营销数据的违规用电行为预测方法,其特征在于,所述预测方法包括:从电力营销数据库中获取用户用电数据,对用户用电数据进行处理,得到用户用电相关系数矩阵,对获取到的系数矩阵进行整理得到用户用电数据表;构建卷积神经网络模型;将用户用电数据表划分为训练数据集和测试参数集,基于训练数据集对卷积神经网络模型进行训练,将测试参数集导入训练后的卷积神经网络模型中进行违规用电行为预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网浙江省电力有限公司信息通信分公司;杭州电子科技大学,未经国网浙江省电力有限公司信息通信分公司;杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910222802.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top