[发明专利]人脸识别模型的训练方法、装置和计算机可读存储介质有效
| 申请号: | 201910219576.X | 申请日: | 2019-03-21 |
| 公开(公告)号: | CN109934197B | 公开(公告)日: | 2023-07-07 |
| 发明(设计)人: | 邵新庆;宋咏君;刘强 | 申请(专利权)人: | 深圳力维智联技术有限公司 |
| 主分类号: | G06V40/16 | 分类号: | G06V40/16;G06V10/82;G06N3/0464;G06N3/047;G06N3/09 |
| 代理公司: | 深圳市世纪恒程知识产权代理事务所 44287 | 代理人: | 胡海国 |
| 地址: | 518057 广东省深圳市南*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种人脸识别模型的训练方法,所述人脸识别模型的训练方法包括以下步骤:采用深度卷积神经网络中各个目标网络层对各个目标人脸图像进行特征提取,以得到多个全局特征;根据所述全局特征对应的目标网络层对所述全局特征进行分割得到各个局部特征,并将所述目标人脸图像对应的各个所述全局特征进行融合得到融合特征;对所述全局特征、所述局部特征以及融合特征进行损失监督学习,以对人脸识别模型进行训练。本发明还公开一种人脸识别模型的训练装置和计算机可读存储介质。本发明提高了人脸识别的精度。 | ||
| 搜索关键词: | 识别 模型 训练 方法 装置 计算机 可读 存储 介质 | ||
【主权项】:
1.一种人脸识别模型的训练方法,其特征在于,所述人脸识别模型的训练方法包括以下步骤:采用深度卷积神经网络中各个目标网络层对各个目标人脸图像进行特征提取,以得到多个全局特征;根据所述全局特征对应的目标网络层对所述全局特征进行分割得到各个局部特征,并将所述目标人脸图像对应的各个所述全局特征进行融合得到融合特征;对所述全局特征、所述局部特征以及融合特征进行损失监督学习,以对人脸识别模型进行训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳力维智联技术有限公司,未经深圳力维智联技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910219576.X/,转载请声明来源钻瓜专利网。





