[发明专利]目标检测深度学习模型训练方法以及目标检测方法在审
| 申请号: | 201910202433.8 | 申请日: | 2019-03-11 |
| 公开(公告)号: | CN109978036A | 公开(公告)日: | 2019-07-05 |
| 发明(设计)人: | 蔡恒;庄浩;张继勇 | 申请(专利权)人: | 华瑞新智科技(北京)有限公司 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04 |
| 代理公司: | 北京恒泰铭睿知识产权代理有限公司 11642 | 代理人: | 付怀;何平 |
| 地址: | 100081 北京市海淀区中关*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于深度学习的目标检测中对深度学习模型进行训练的方法,包括,建立模型训练图片集,其中包括由不包含检测目标的实际场景图片构成的负样本训练集和由包含检测目标的非实际场景图片构成的正样本训练集;使用所述模型训练图片集以及其中的图片与检测目标相关的信息,对深度学习模型进行训练。本发明计算损失时考虑进了背景图片的损失,极大地降低了模型对实际检测场景中背景的误检率;对光照变化、场景改变有较强鲁棒性;运行速度快且能在cpu上实时运行检测,稳定而高效;硬件要求简单,易于大规模推广。 | ||
| 搜索关键词: | 目标检测 检测 模型训练 实际场景 训练集 学习 场景 图片 背景图片 光照变化 建立模型 实时运行 训练图片 硬件要求 负样本 鲁棒性 误检率 正样本 | ||
【主权项】:
1.一种基于深度学习的目标检测中对深度学习模型进行训练的方法,包括,建立模型训练图片集,其中包括由不包含检测目标的实际场景图片构成的负样本训练集和由包含检测目标的非实际场景图片构成的正样本训练集;使用所述模型训练图片集以及其中的图片与检测目标相关的信息,对深度学习模型进行训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华瑞新智科技(北京)有限公司,未经华瑞新智科技(北京)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910202433.8/,转载请声明来源钻瓜专利网。





