[发明专利]一种融合实体类型约束的神经网络关系抽取方法及系统有效
| 申请号: | 201910149696.7 | 申请日: | 2019-02-28 |
| 公开(公告)号: | CN109992629B | 公开(公告)日: | 2021-08-06 |
| 发明(设计)人: | 靳小龙;程学旗;席鹏弼;郭嘉丰;白龙 | 申请(专利权)人: | 中国科学院计算技术研究所 |
| 主分类号: | G06F16/28 | 分类号: | G06F16/28 |
| 代理公司: | 北京律诚同业知识产权代理有限公司 11006 | 代理人: | 祁建国;梁挥 |
| 地址: | 100080 北*** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及一种融合实体类型约束的神经网络关系抽取方法及系统,包括对实体类型施加注意力机制,该机制对实体的多种类型分配了不同权重,从而凸显了影响最大的类型标签;在损失函数中添加实体类型约束函数,该约束函数在更新过程中使实体词向量学习到实体类型信息,从而实现实体类型对关系的约束。该技术增强了模型对通用方法无法区别关系的识别能力。 | ||
| 搜索关键词: | 一种 融合 实体 类型 约束 神经网络 关系 抽取 方法 系统 | ||
【主权项】:
1.一种融合实体类型约束的神经网络关系抽取方法,其特征在于,包括:预测步骤,获取训练句袋,该训练句袋包括实体对共现的多个句子,每个训练句袋对应一个表示实体间关系的三元组,将该训练句袋中句子编码为句子向量,并通过注意力机制将该句子向量聚合为句袋向量,将该句袋向量输入至预测模型得到训练句袋对应各关系类型的概率;约束步骤,为该训练句袋中涉及的实体标记实体类型,并将该实体类型向量化,得到类型向量,根据实体间关系的注意力向量得到每个该类型向量的权重,根据该权重使用注意力机制将该类型向量聚合,以曼哈顿距离表示该实体类型对词向量的约束;更新步骤,根据该曼哈顿距离和该关系类型计算损失函数,并对该预测模型进行更新,直到该损失函数收敛,将当前预测模型作为最终模型;抽取步骤,依次将具有不同关系注意力的待抽取句袋输入该最终模型,得到多个该待抽取句袋的预测结果,将每个关系注意力下的预测结果聚合为最终预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910149696.7/,转载请声明来源钻瓜专利网。





