[发明专利]基于多层融合的卷积神经网络RGB-D显著性检测方法在审
申请号: | 201910134631.5 | 申请日: | 2019-02-23 |
公开(公告)号: | CN109903276A | 公开(公告)日: | 2019-06-18 |
发明(设计)人: | 黄睿;周末 | 申请(专利权)人: | 中国民航大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/50;G06N3/04 |
代理公司: | 天津市北洋有限责任专利代理事务所 12201 | 代理人: | 李林娟 |
地址: | 300300 天*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多层融合的卷积神经网络RGB‑D显著性检测方法,包括:将VGG16网络中的全连层模块FC6和FC7转变为全卷积层、结合卷积层CONV1‑CONV5组成新的卷积神经网络;对新的卷积神经网络依次进行降维和融合操作,得到初始迭代的显著性检测结果;采用迭代优化对初始迭代的显著性检测结果进行细化;采用不同的训练数据对新的卷积神经网络依次进行初始化训练、第一第二次微调训练;对训练后的结果,使用显著性物体的最小包围框,对输入图像进行剪切和镜面翻转,获取显著性检测结果。本发明设计了有效的CNN模型,融合RGB和深度信息,并捕获显著对象的多尺度特征,融合了从较高层到较低层的卷积特征,以解决显著性物体的尺度问题。 | ||
搜索关键词: | 卷积神经网络 显著性 检测结果 融合 卷积 显著性物体 迭代 多层 多尺度特征 尺度问题 迭代优化 镜面翻转 深度信息 输入图像 显著对象 训练数据 剪切 包围框 初始化 较低层 较高层 检测 微调 细化 捕获 网络 | ||
【主权项】:
1.一种基于多层融合的卷积神经网络RGB‑D显著性检测方法,其特征在于,所述方法包括:将VGG16网络中的全连层模块FC6和FC7转变为全卷积层、结合卷积层CONV1‑CONV5组成新的卷积神经网络;对新的卷积神经网络依次进行降维和融合操作,得到初始迭代的显著性检测结果;采用迭代优化对初始迭代的显著性检测结果进行细化;采用不同的训练数据对新的卷积神经网络依次进行初始化训练、第一第二次微调训练;对训练后的结果,使用显著性物体的最小包围框,对输入图像进行剪切和镜面翻转,获取显著性检测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国民航大学,未经中国民航大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910134631.5/,转载请声明来源钻瓜专利网。