[发明专利]一种基于元路径拥塞模式挖掘的移动对象行驶时间预测方法及装置有效

专利信息
申请号: 201910110832.1 申请日: 2019-02-12
公开(公告)号: CN109712402B 公开(公告)日: 2021-11-12
发明(设计)人: 韩京宇;王宁 申请(专利权)人: 南京邮电大学
主分类号: G08G1/01 分类号: G08G1/01;G06K9/62
代理公司: 南京苏高专利商标事务所(普通合伙) 32204 代理人: 王恒静
地址: 210000 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于元路径拥塞模式挖掘的移动对象行驶时间预测方法,包括以下步骤:采集固定时间间隔的多个GPS数据作为训练样本,并将所述GPS数据通过地图匹配算法匹配到路网上,得到与GPS数据对应的路径轨迹;将匹配后的路径轨迹分割成元路径存储到路径字典中,挖掘每条元路径各个时间的拥塞状态,并根据不同元路径间的关联性,提取拥塞特征向量;将提取的拥塞特征向量加入特征矩阵中,并采用K‑Means聚类算法填补所述特征矩阵中的空缺值,得到预测模型;输入需要预测行驶时间的路径轨迹,实现行驶时间的预测。本发明提取局部道路的拥塞特征,从更细的粒度捕捉拥塞变化规律,并针对稀疏轨迹数据,提出采用k均值聚类算法,为预测提供精准支撑。
搜索关键词: 一种 基于 路径 拥塞 模式 挖掘 移动 对象 行驶 时间 预测 方法 装置
【主权项】:
1.一种基于元路径拥塞模式挖掘的移动对象行驶时间预测方法,其特征在于,包括以下步骤:(1)采集固定时间间隔的多个GPS数据作为训练样本,并将所述GPS数据通过地图匹配算法匹配到路网上,得到与GPS数据对应的路径轨迹;(2)将匹配后的路径轨迹分割成元路径存储到路径字典中,挖掘每条元路径各个时间的拥塞状态,并根据不同元路径间的关联性,提取拥塞特征向量;(3)将提取的拥塞特征向量加入特征矩阵中,并采用K‑Means聚类算法填补所述特征矩阵中的空缺值,得到预测模型;(4)输入需要预测行驶时间的路径轨迹,实现行驶时间的预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201910110832.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top