[发明专利]基于EMD-VMD-PSO-BPNN的短期电力负荷预测模型建立方法在审
申请号: | 201910060831.0 | 申请日: | 2019-01-23 |
公开(公告)号: | CN110009125A | 公开(公告)日: | 2019-07-12 |
发明(设计)人: | 李继庚;洪蒙纳;满奕;胡雨沙 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李斌 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于EMD‑VMD‑PSO‑BPNN的短期电力负荷预测模型建立方法,该短期电力负荷预测模型应用于造纸企业的电力负荷预测,包括下述步骤:首先获取造纸企业数据质量合格的总有效负荷的数据;采用EMD‑VMD组合算法对总有效负荷进行序列分解;采用近似熵对分解的序列进行重构;利用滞后自相关方法选择模型输入;采用PSO‑BPNN对重构序列进行建模;采用训练样本对PSO‑BPNN模型进行训练,建立预测模型,并进行造纸企业用电负荷预测,最后对预测效果进行分析。本发明基于EMD‑VMD‑PSO‑BPNN算法建立短期电力负荷预测模型,具有模型收敛快,预测结果精度高、无滞后诸多特点。 | ||
搜索关键词: | 电力负荷预测 造纸企业 模型建立 有效负荷 重构 方法选择 模型输入 模型应用 序列分解 训练样本 用电负荷 预测结果 预测模型 组合算法 滞后 近似熵 自相关 预测 建模 算法 收敛 分解 分析 | ||
【主权项】:
1.一种基于EMD‑VMD‑PSO‑BPNN的短期电力负荷预测模型建立方法,该短期电力负荷预测模型应用于造纸企业的电力负荷预测,其特征在于,所述的建立方法包括以下步骤:S1、获取造纸企业数据的用电数据;S2、利用EMD‑VMD分解算法,对预处理后的负荷序列进行序列分解;S3、利用近似熵法对分解序列进行序列重构;S4、利用滞后自相关法对每个重构序列选取输入变量;S5、设置BPNN网络的隐藏层神经元数,以及BPNN网络的权值和阈值,把分解序列的训练集输入初始的BPNN网络中,把拟合结果和实际结果之间残差作为适应度值,利用PSO算法更新权值和阈值的大小,寻找最优的拟合结果,把最优拟合结果对应BPNN网络进行输出,利用训练好的BPNN网络对重构序列进行预测,把所有重构序列的预测结果进行叠加,得到短期电力负荷预测模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910060831.0/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理