[发明专利]一种基于深度增强学习的空间非合作目标捕获方法有效
| 申请号: | 201910005655.0 | 申请日: | 2019-01-03 |
| 公开(公告)号: | CN109625333B | 公开(公告)日: | 2021-08-03 |
| 发明(设计)人: | 王月娇;马钟;杨一岱;王竹平 | 申请(专利权)人: | 西安微电子技术研究所 |
| 主分类号: | B64G1/24 | 分类号: | B64G1/24;G05D1/08 |
| 代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
| 地址: | 710065 陕西*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于深度增强学习的空间非合作目标捕获方法,分两步完成并实现交互。第一步,利用三维可视化软件搭建服务飞行器和目标飞行器的三维可视化环境,可视化环境的输入是服务飞行器的控制力和控制力矩,输出是服务飞行器和目标飞行器的状态。第二步,构建卷积神经网络模型,在三维可视化环境中对服务飞行器进行智能自主空间非合作目标捕获训练。卷积神经网络模型以服务飞行器和目标飞行器的状态为输入,利用其权重参数,输出控制服务飞行器所需的控制力和控制力矩并送入可视化环境中,两个飞行器的状态继续被输入神经网络以进行持续的深度增强训练。通过可视化环境和神经网络的不断交互,捕获反馈结果得以正确输出。 | ||
| 搜索关键词: | 一种 基于 深度 增强 学习 空间 合作 目标 捕获 方法 | ||
【主权项】:
1.一种基于深度增强学习的空间非合作目标捕获方法,其特征在于,包括以下步骤:第一步,搭建三维可视化环境:利用可视化软件搭建服务飞行器和目标飞行器的三维可视化环境,三维可视化环境的输入是服务飞行器的控制力和控制力矩,输出是服务飞行器和目标飞行器的状态,状态包括位置、线速度和姿态角速度;第二步,构建卷积神经网络模型:卷积神经网络模型以服务飞行器和目标飞行器的状态作为输入,以控制服务飞行器所需的控制力和控制力矩为输出;以完成轨道近距离跟踪,绕飞消旋和姿态控制为任务,离散化卷积神经网络模型输出的控制力和控制力矩,构建分段加权奖励函数;第三步,卷积神经网络模型训练:利用DQN算法在三维可视化环境中对服务飞行器进行空间非合作目标捕获训练,利用卷积神经网络模型输出控制力和控制力矩并将其送入可视化环境中,环境输出的两个飞行器状态又继续被输入到神经网络模型中,通过三维可视化环境和卷积神经网络模型的不断交互,通过神经网络持续的自我学习,不断更新卷积神经网络模型的权重参数,直至获得正确的捕获反馈结果;第四步,完成非合作目标捕获任务:利用训练好的卷积神经网络模型对服务飞行器实施控制,从而对目标飞行器实现轨道近距离跟踪,绕飞消旋和组合体的姿态控制。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安微电子技术研究所,未经西安微电子技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910005655.0/,转载请声明来源钻瓜专利网。





