[发明专利]基于时频二维图像和机器学习的动态心电质量评估方法在审
| 申请号: | 201811594322.8 | 申请日: | 2018-12-25 |
| 公开(公告)号: | CN109745033A | 公开(公告)日: | 2019-05-14 |
| 发明(设计)人: | 刘澄玉;赵钟瑶;赵莉娜;李建清 | 申请(专利权)人: | 东南大学 |
| 主分类号: | A61B5/0402 | 分类号: | A61B5/0402 |
| 代理公司: | 南京众联专利代理有限公司 32206 | 代理人: | 叶倩 |
| 地址: | 210096 *** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明专利公开了一种基于时频二维图像和机器学习的动态心电质量评估方法,通过将一维心电信号转变为二维时频图像,并将得到的二维时频图馈送到机器学习系统中进行训练,得到一个自动且准确拣选有用穿戴式心电信号的信号质量评估模型,该模型可以对输入的时频图像进行分类,划分信号质量等级,不仅能够有效地抑制无临床诊断价值的噪声心电信号,而且能够进一步对有临床诊断价值的心电片段做进一步信号质量分类,从而提供更为直观细致的信号质量反馈信息。 | ||
| 搜索关键词: | 心电信号 时频 图像 动态心电 机器学习 临床诊断 时频二维 质量评估 二维 机器学习系统 信号质量评估 质量反馈信息 划分信号 质量分类 有效地 拣选 心电 穿戴 噪声 直观 分类 | ||
【主权项】:
1.基于时频二维图像和机器学习的动态心电质量评估方法,其特征在于,包括以下步骤:S1,获取原始动态心电数据信号;S2,通过信号质量标记拾取心电数据信号片段并划分类型;S3,将步骤S2中的每一段心电信号片段处理成时频二维图像;S4,将处理后的时频二维图像馈送到机器学习模型中以训练分类模型;S5,将待分类的心电测试信号处理成为时频二维图像;S6,将步骤S5中得到的时频二维图像输入到S4得到的分类模型中进行分类,即可输出信号质量等级结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811594322.8/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序





