[发明专利]一种多角度物体检测方法和系统有效
申请号: | 201811593474.6 | 申请日: | 2018-12-25 |
公开(公告)号: | CN109785298B | 公开(公告)日: | 2021-03-05 |
发明(设计)人: | 刘永;王瑞平;山世光;陈熙霖 | 申请(专利权)人: | 中国科学院计算技术研究所 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06K9/62 |
代理公司: | 北京律诚同业知识产权代理有限公司 11006 | 代理人: | 祁建国;梁挥 |
地址: | 100080 北*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种多角度物体检测方法,包括:以深度神经网络构建检测模型;对训练图提取特征以获得多个特征图,设置多个垂直矩形锚框,获取该垂直矩形锚框与该训练图的样本物体的相交比,并以该相交比大于正例阈值的垂直矩形锚框标记为该训练图的样本物体的正例;通过该特征图对每个该正例进行回归预测,获取该样本物体的倾斜椭圆锚框的特征参数,以对该检测模型进行学习;以该检测模型检测目标图,获取该目标图中物体的倾斜椭圆锚框。 | ||
搜索关键词: | 一种 角度 物体 检测 方法 系统 | ||
【主权项】:
1.一种多角度物体检测方法,其特征在于,包括:以深度神经网络构建检测模型;对训练图提取特征以获得多个特征图,设置多个垂直矩形锚框,获取该垂直矩形锚框与该训练图的样本物体的相交比,并以该相交比大于正例阈值的垂直矩形锚框标记为该训练图的样本物体的正例;通过该特征图对每个该正例进行回归预测,获取该样本物体的倾斜椭圆锚框的特征参数,以对该检测模型进行学习;以该检测模型检测目标图,获取该目标图中物体的倾斜椭圆锚框。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811593474.6/,转载请声明来源钻瓜专利网。