[发明专利]一种基于度量学习和支持向量机相集成的行人再识别方法有效
申请号: | 201811576219.0 | 申请日: | 2018-12-22 |
公开(公告)号: | CN109815815B | 公开(公告)日: | 2021-06-18 |
发明(设计)人: | 李华锋;赵丹丹;王红斌;余正涛;线岩团;文永华 | 申请(专利权)人: | 昆明理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06K9/66 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 650093 云*** | 国省代码: | 云南;53 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于度量学习和支持向量机相集成的行人再识别方法,属于图像处理、模式识别技术领域。本发明首先生成带有行人标签信息的行人特征矩阵;对度量行人距离的非线性空间M做处理;设置支持向量机内用到的行人标签信息;支持向量机引入约束变量,再把支持向量机作为非线性空间的约束条件;对非线性空间M的约束条件进行缩放处理;找到投影矩阵和分类器的最优解,用度量学习和支持向量机相集成的识别模型进行行人识别,得到识别率。本发明集成了度量学习和支持向量机。和已有方法相比,本发明所提出的方法有效的挖掘、利用了行人数据集中的标签信息,使行人匹配率得到有效的提升。 | ||
搜索关键词: | 一种 基于 度量 学习 支持 向量 集成 行人 识别 方法 | ||
【主权项】:
1.一种基于度量学习和支持向量机相集成的行人再识别方法,其特征在于:首先生成带有行人标签信息的行人特征矩阵;对度量行人距离的非线性空间M做处理;设置支持向量机内用到的行人标签信息;支持向量机引入约束变量,再把支持向量机作为非线性空间的约束条件;对非线性空间M的约束条件进行缩放处理;找到投影矩阵和分类器的最优解,用度量学习和支持向量机相集成的识别模型进行行人识别,得到识别率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于昆明理工大学,未经昆明理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811576219.0/,转载请声明来源钻瓜专利网。