[发明专利]一种事件识别模型的训练方法和装置有效
申请号: | 201811535981.4 | 申请日: | 2018-12-14 |
公开(公告)号: | CN109670174B | 公开(公告)日: | 2022-12-16 |
发明(设计)人: | 刘树林 | 申请(专利权)人: | 腾讯科技(深圳)有限公司 |
主分类号: | G06F40/284 | 分类号: | G06F40/284;G06F40/295;G06N3/04;G06N3/08 |
代理公司: | 深圳市深佳知识产权代理事务所(普通合伙) 44285 | 代理人: | 王仲凯 |
地址: | 518057 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种事件识别模型的训练方法和装置,用于实现不依赖触发词的事件识别模型训练,提高事件识别模型的训练效率。该方法包括:从训练数据库中获取到目标事件类型和第一文本样本,并将所述目标事件类型和所述第一文本样本输入到初始的事件识别模型中,所述事件识别模型中配置有注意力层;通过所述注意力层获取所述第一文本样本中每个词相对于所述目标事件类型的关注度信息;根据所述第一文本样本中每个词相对于所述目标事件类型的关注度信息,通过所述事件识别模型输出所述第一文本样本与所述目标事件类型的关联结果;根据所述事件识别模型输出的所述关联结果,采用预设的损失函数对所述事件识别模型进行训练。 | ||
搜索关键词: | 一种 事件 识别 模型 训练 方法 装置 | ||
【主权项】:
1.一种事件识别模型的训练方法,其特征在于,包括:从训练数据库中获取到目标事件类型和第一文本样本,并将所述目标事件类型和所述第一文本样本输入到初始的事件识别模型中,所述事件识别模型中配置有注意力层;通过所述注意力层获取所述第一文本样本中每个词相对于所述目标事件类型的关注度信息;根据所述第一文本样本中每个词相对于所述目标事件类型的关注度信息,通过所述事件识别模型输出所述第一文本样本与所述目标事件类型的关联结果;根据所述事件识别模型输出的所述关联结果,采用预设的损失函数对所述事件识别模型进行训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811535981.4/,转载请声明来源钻瓜专利网。