[发明专利]一种基于深度网络特征间重要性的图像质量评估方法有效
申请号: | 201811512050.2 | 申请日: | 2018-12-11 |
公开(公告)号: | CN109671063B | 公开(公告)日: | 2020-08-18 |
发明(设计)人: | 李凡;李梦月;杨晓晗;张扬帆 | 申请(专利权)人: | 西安交通大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/04;G06N3/08 |
代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
地址: | 710049 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: |
本发明公开了一种基于深度网络特征间重要性的图像质量评估方法,该方法在端到端的神经网络模型训练中加入了判别特征图间重要性关系的模块,能够更准确的预测图像质量,并且在各个图像质量评估(IQA)数据集上展现出较强的泛化能力。具体包括步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG‑16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG |
||
搜索关键词: | 一种 基于 深度 网络 特征 重要性 图像 质量 评估 方法 | ||
【主权项】:
1.一种基于深度网络特征间重要性的图像质量评估方法,其特征在于,包括以下步骤:1)准备训练测试网络模型所用的图像质量评估数据集,将图像质量评估数据集按照图像内容随机划分为训练集和测试集;2)将SeNet模块加入VGG‑16网络以搭建用于图像质量评估的多个不同组合方式的神经网络模型VGG*‑SE,使用训练数据集分别对其进行训练,当训练的模型在测试数据集上达到预期的精度,选择此模型作为最终模型,并保存网络模型训练后的参数;3)使用选取的最终模型计算测试集的预测精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811512050.2/,转载请声明来源钻瓜专利网。