[发明专利]基于多任务全卷积神经网络的人脸网纹污迹去除方法有效
申请号: | 201811487067.7 | 申请日: | 2018-12-06 |
公开(公告)号: | CN109801225B | 公开(公告)日: | 2022-12-27 |
发明(设计)人: | 陈乔松;申发海;陶亚;弓攀豪;曹依依;董广县;蒲柳 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06T5/00 | 分类号: | G06T5/00;G06V40/16;G06V10/82;G06N3/04 |
代理公司: | 重庆市恒信知识产权代理有限公司 50102 | 代理人: | 刘小红;陈栋梁 |
地址: | 400065 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明请求保护一种基于多任务全卷积神经网络的人脸网纹污迹去除方法,具体步骤如下:步骤一,利用公共人脸数据集CelebA的清晰人脸图像作为无网纹图像数据集,制作训练集与验证集;步骤二,将网纹图像、真实图像、网纹二值mask图像均裁剪成大小为64x64的图像块;步骤三,运用引导滤波,获取人脸网纹图像的细节层信息作为模型输入;步骤四,设计全卷积神经网络,输出残差信息与二值mask网纹判别信息;步骤五,用成对的训练数据优化真实图像、网纹图像与残差信息的损失,以及预测网纹mask与真实网纹mask标签损失,训练模型;步骤六,利用训练得到的模型参数,预测真实场景的测试图像,得到预测的去污图像。本发明为人脸图像后续操作提供了高质量的图像。 | ||
搜索关键词: | 基于 任务 卷积 神经网络 人脸网纹 污迹 去除 方法 | ||
【主权项】:
1.一种基于多任务全卷积神经网络的人脸网纹污迹去除方法,其特征在于,包含以下步骤:1)、利用公共人脸数据集CelebA的清晰人脸图像作为无网纹图像数据集,基于该无网纹图像数据,利用随机算法生成样式多样的网纹,通过通道融合,叠加到无网纹图像上,得到有网纹图像集,同时将对应的网纹二值化得到网纹二值mask图像,将三组数据对应的随机划分得到用于模型训练与评估的训练集与验证集;2)、将网纹图像、无网纹图像、网纹二值mask图像成对地裁剪成若干个大小为N1xN1的图像块,N1为模型的输入大小,并将三类图像的图像块作为一组,存储为HDF5格式;3)、运用引导滤波,获取人脸网纹图像的细节层信息作为模型输入;4)、基于TensorFlow开源深度学习框架,设计全卷积神经网络,输出残差信息与二值mask网纹判别信息;5)、利用成对的训练数据优化真实图像、网纹图像与残差信息的损失,以及预测网纹mask与真实网纹mask标签损失,训练模型;6)、利用训练得到的模型参数,预测真实场景的测试图像,得到预测的去污图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811487067.7/,转载请声明来源钻瓜专利网。