[发明专利]一种基于复合神经网络的景区异常事件抽取方法在审
申请号: | 201811486378.1 | 申请日: | 2018-12-06 |
公开(公告)号: | CN109670172A | 公开(公告)日: | 2019-04-23 |
发明(设计)人: | 罗笑南;贺昭荣;钟艳如;李芳;汪华登 | 申请(专利权)人: | 桂林电子科技大学 |
主分类号: | G06F17/27 | 分类号: | G06F17/27;G06K9/62 |
代理公司: | 桂林市华杰专利商标事务所有限责任公司 45112 | 代理人: | 杨雪梅 |
地址: | 541004 广*** | 国省代码: | 广西;45 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于复合神经网络的景区异常事件抽取方法,该方法是对获取的事件原始文本语料进行数据预处理,事件句转换为词向量,将其序列传入到双向长短时记忆网络,利用双向长短时记忆网络来训练得到每个候选触发词的语义特征;再将以词向量表示的事件句序列传入到卷积神经网络中,利用卷积神经网络训练得到候选触发词所在事件句的全局特征;通过综合候选触发词的语义特征与候选触发词所在句子的全局特征,利用softmax作为分类器来对每个候选触发词进行分类,从而找出景区异常事件的触发词,并根据人工标注的触发词类型来将事件类型分类。本发明能够快速准确的抽取景区异常事件,处理繁复冗杂文本中的异常事件,效率高且泛用性佳。 | ||
搜索关键词: | 触发 异常事件 卷积神经网络 抽取 景区 复合神经 记忆网络 全局特征 语义特征 词向量 数据预处理 人工标注 事件类型 原始文本 词类型 泛用性 分类器 分类 语料 句子 网络 文本 转换 | ||
【主权项】:
1.一种基于复合神经网络的景区异常事件抽取方法,其特征在于,包括如下步骤:S1、对事件原始语料的原始文本进行数据预处理,对原始文本进行清洗和分句,得到事件句,然后对事件句进行分词和命名体识别,根据人工标注的异常事件信息,将事件句进行序列标注,触发词根据其类型进行标注,非触发词类别标注为无,得到事件句序列并将事件句序列转换为词向量的形式;S2、将以词向量表示的事件句序列输入到双向长短时记忆网络,利用双向长短时记忆网络来训练得到每个候选触发词的语义特征;S3、将以词向量表示的事件句序列传入到卷积神经网络中,利用CNN卷积神经网络训练得到候选触发词所在事件句的全局特征;S4、根据步骤S2得到的候选触发词的语义特征和步骤S3得到的候选触发词所在事件句的全局特征,选择softmax模型设计分类器进行事件分类,找出相关异常事件的触发词,匹对相应的触发词类型,判断事件类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林电子科技大学,未经桂林电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811486378.1/,转载请声明来源钻瓜专利网。