[发明专利]基于卷积神经网络的超短波特定信号识别方法有效
申请号: | 201811159958.X | 申请日: | 2018-09-30 |
公开(公告)号: | CN109379311B | 公开(公告)日: | 2021-08-17 |
发明(设计)人: | 杨司韩;潘一苇;李天昀;彭华;许漫坤;李广 | 申请(专利权)人: | 中国人民解放军战略支援部队信息工程大学 |
主分类号: | H04L27/00 | 分类号: | H04L27/00;G06N3/08;G06N3/04 |
代理公司: | 郑州大通专利商标代理有限公司 41111 | 代理人: | 周艳巧 |
地址: | 450000 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于无线电信号识别技术领域,特别涉及一种基于卷积神经网络的超短波特定信号识别方法,包含:对样本库中特定信号进行短时傅里叶变换,获取信号时频图谱,其中,特定信号为信号传输数据帧结构中包含帧同步码的信号;使用时频图谱对卷积神经网络模型进行训练;利用训练后的卷积神经网络模型对超短波通信中特定信号进行识别。本发明首先分析特定信号在时频谱图上呈现的视觉特性,并通过卷积神经网络模型进行训练,实现超短波特定信号的识别,提高信号识别率;最后通过仿真实验,有效降低超短波信道上混叠干扰的影响,实现低信噪比下超短波特定信号识别,并且能通过优化网络结构和增加网络层数来提高抗干扰性能,具有较强的实际应用价值。 | ||
搜索关键词: | 基于 卷积 神经网络 超短波 特定 信号 识别 方法 | ||
【主权项】:
1.一种基于卷积神经网络的超短波特定信号识别方法,其特征在于,包含如下内容:对样本库中特定信号进行短时傅里叶变换,获取信号时频图谱,其中,特定信号为信号传输数据帧结构中包含帧同步码的信号;使用时频图谱对卷积神经网络模型进行训练;利用训练后的卷积神经网络模型对超短波通信中特定信号进行识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军战略支援部队信息工程大学,未经中国人民解放军战略支援部队信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811159958.X/,转载请声明来源钻瓜专利网。