[发明专利]基于PCANet深度学习模型下的自动分割方法有效
申请号: | 201811148093.7 | 申请日: | 2018-09-29 |
公开(公告)号: | CN109447998B | 公开(公告)日: | 2020-12-18 |
发明(设计)人: | 张旭明;周琳 | 申请(专利权)人: | 华中科技大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06K9/62 |
代理公司: | 华中科技大学专利中心 42201 | 代理人: | 许恒恒;李智 |
地址: | 430074 湖北*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于PCANet深度学习模型下的图像自动分割方法,该方法具体包括以下步骤:(1)将待分割的图像依次经过预处理、超像素聚类处理、第一PCANet网络的处理、以及第一SVM分类器的处理后得到粗分割后的图像;粗分割后的图像即二值化的预分割图像;(2)将步骤(1)得到的粗分割后的图像依次经过第二PCANet网络的处理、以及第二SVM分类器的处理后得到精分割后的图像,精分割后的图像即二值化的最终分割图像,由此完成图像的自动分割。本发明通过对该自动分割方法的整体数据处理流程、以及相应自动分割系统的框架结构进行控制,将超像素与PCANet网络结合实现图像的自动分割,可大大提高诸如钼靶肿块的分割精度与鲁棒性。 | ||
搜索关键词: | 基于 pcanet 深度 学习 模型 自动 分割 方法 | ||
【主权项】:
1.一种基于PCANet深度学习模型下的图像自动分割方法,其特征在于,包括以下步骤:(1)将待分割的图像依次经过预处理、超像素聚类处理、第一PCANet网络的处理、以及第一SVM分类器的处理后得到粗分割后的图像;其中,所述超像素聚类处理是用于对预处理得到的图像进行超像素分割,得到多个超像素块;所述第一PCANet网络的处理用于提取各个超像素块的特征向量,所述第一SVM分类器的处理则用于根据这些特征向量对各个超像素块进行二分类;所述粗分割后的图像即二值化的预分割图像;(2)将所述步骤(1)得到的所述粗分割后的图像依次经过第二PCANet网络的处理、以及第二SVM分类器的处理后得到精分割后的图像,由此完成图像的自动分割;其中,所述第二PCANet网络的处理基于所述粗分割后的图像上的各个像素点重新选取对应的图像块并进行特征向量的提取,所述第二SVM分类器的处理则用于根据这些特征向量对各个像素点进行二分类;所述精分割后的图像即二值化的最终分割图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811148093.7/,转载请声明来源钻瓜专利网。