[发明专利]基于深度学习语义分割网络的遥感影像地物分类方法有效
申请号: | 201811130333.0 | 申请日: | 2018-09-27 |
公开(公告)号: | CN109255334B | 公开(公告)日: | 2021-12-07 |
发明(设计)人: | 楚博策;帅通;高峰;王士成;陈金勇 | 申请(专利权)人: | 中国电子科技集团公司第五十四研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06N3/04;G06N3/08;G06T7/13;G06T7/40 |
代理公司: | 河北东尚律师事务所 13124 | 代理人: | 王文庆 |
地址: | 050081 河北省石家庄*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习语义分割网络的遥感影像地物分类方法,首先对遥感影像中各类地物进行逐像素标注,构建遥感地物标注影像库作为训练标签。随后本发明设计一种采用纹理、结构特征为基础构建多尺度特征图组的方法,将特征图组和原始影像合并作为深度学习网络的输入,除此之外本发明根据deeplab算法设计了一种全卷积网络的改进网络结构,通过卷积与反卷积进行参数训练,最终对宽幅遥感图像进行重叠切分,分类后合并得到最终宽幅遥感影像地物分类结果。可以在高效迅速地实现高分辨率遥感影像各种地物像素级分类,精简了传统的分类方法的复杂流程,并且实现很好的分割与分类效果。 | ||
搜索关键词: | 基于 深度 学习 语义 分割 网络 遥感 影像 地物 分类 方法 | ||
【主权项】:
1.一种基于深度学习语义分割网络的遥感影像地物分类方法,其特征在于包括以下步骤:(1)采集不同载荷的高分辨率可见光的遥感图像,对每一张图像中地物进行逐像素标注,标注后的数据组成一幅二值图像,把原始遥感图像和对应标注图像打包构成训练集和测试集;(2)对训练集中原始遥感图像采用多尺度窗口对二维熵、粗糙度和对比度纹理特征进行提取,形成多尺度特征图组;并对训练集中原始遥感图像采用Canny算子将地物边缘提取出来,形成结构特征图;(3)以DeepLab的思想为基础,构建深度学习全卷积语义分割模型;(4)将步骤(2)中生成的多尺度特征图组、结构特征图与原始遥感图像进行组合形成输入图组,作为步骤(3)中深度学习全卷积语义分割模型的输入进行模型训练,最终得到参数稳定的模型;(5)对测试集中待分类的原始遥感图像进行切分,将切分后影像通过步骤(4)中训练好的参数稳定的模型进行分类,将分类结果合并到一起生成宽幅检测结果,当重叠区域检测结果产生矛盾时,保留其中分类为非背景像素的结果,得到最终的合并结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国电子科技集团公司第五十四研究所,未经中国电子科技集团公司第五十四研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811130333.0/,转载请声明来源钻瓜专利网。