[发明专利]一种基于网络包载荷的卷积神经网络流量分类方法及系统有效

专利信息
申请号: 201811122301.6 申请日: 2018-09-26
公开(公告)号: CN109361617B 公开(公告)日: 2022-09-27
发明(设计)人: 周旭;徐陆阳;任勇毛;覃毅芳 申请(专利权)人: 中国科学院计算机网络信息中心
主分类号: H04L47/2441 分类号: H04L47/2441;G06N3/08;G06N3/04;G06K9/62
代理公司: 北京亿腾知识产权代理事务所(普通合伙) 11309 代理人: 陈霁
地址: 100190 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于网络包载荷的卷积神经网络流量分类方法及系统,其中,方法包括以下步骤:将网络抓包所得pcap文件中所有的数据包传输层的去除头部后的载荷数据提出取来,将数据包的载荷的信息转换为字节序列,随机打乱数据顺序并且进行训练集、验证集和测试集的分割;将结构化的数据输入一维卷积神经网络进行训练,完成神经网络隐藏单元的权重参数调整;在验证集和测试集上进行性能验证,若达不到性能指标,则反馈给模型训练模块继续调整模型参数。本发明可以免除繁琐的人工标注工作,只需要流量数据包的载荷数据即可完成高精度分类。用户只需将模型部署到合适的位置,即可随时随机的截取链路中的数据包输入模型即可得到流量类别结果。
搜索关键词: 一种 基于 网络 载荷 卷积 神经 网络流量 分类 方法 系统
【主权项】:
1.一种基于网络包载荷的卷积神经网络流量分类方法,其特征在于,包括以下步骤:将网络抓包所得pcap文件中所有的数据包传输层的去除头部后的载荷数据提出取来,将数据包的载荷的信息转换为字节序列,随机打乱数据顺序并且进行训练集、验证集和测试集的分割;将结构化的数据输入一维卷积神经网络进行训练,完成神经网络隐藏单元的权重参数调整;在验证集和测试集上进行性能验证,若达不到性能指标,则反馈给模型训练模块继续调整模型参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算机网络信息中心,未经中国科学院计算机网络信息中心许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811122301.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top