[发明专利]一种目标检测方法、系统及终端设备有效
申请号: | 201811106758.8 | 申请日: | 2018-09-21 |
公开(公告)号: | CN109447943B | 公开(公告)日: | 2020-08-14 |
发明(设计)人: | 张维桐;田艳玲;张锲石;程俊 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/04 |
代理公司: | 深圳中一专利商标事务所 44237 | 代理人: | 官建红 |
地址: | 518000 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种目标检测方法、系统及终端设备,其中,方法包括:利用卷积神经网络,使用检测框从被测图像中提取若干个目标;获取目标的特征属性,所述特征属性包括空间特征和显式特征;根据所述特征属性,基于关系计算模型,计算目标间的关联特征;利用所述关联特征对所述目标的特征属性进行整合,得到聚合特征;将所述聚合特征代入由所述卷积神经网络的全连接层和所述关系计算模型组成的回溯关系子网络,计算准预测分数;根据所述准预测分数和所述检测框,计算分类分数;根据所述分类分数对目标进行分类检测。本发明极大提高了目标检测的效率和准确度。 | ||
搜索关键词: | 一种 目标 检测 方法 系统 终端设备 | ||
【主权项】:
1.一种目标检测方法,其特征在于,包括:利用卷积神经网络,使用检测框从被测图像中提取若干个目标;获取目标的特征属性,所述特征属性包括空间特征和显式特征;根据所述特征属性,基于关系计算模型,计算目标间的关联特征;利用所述关联特征对所述目标的特征属性进行整合,得到聚合特征;将所述聚合特征代入由所述卷积神经网络的全连接层和所述关系计算模型组成的回溯关系子网络,计算准预测分数;根据所述准预测分数和所述检测框,计算分类分数;根据所述分类分数对目标进行分类检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811106758.8/,转载请声明来源钻瓜专利网。