[发明专利]一种基于深度学习的驾驶员安全带佩戴识别方法有效
| 申请号: | 201811022463.2 | 申请日: | 2018-09-03 |
| 公开(公告)号: | CN109460699B | 公开(公告)日: | 2020-09-25 |
| 发明(设计)人: | 袁嘉言;贾宝芝 | 申请(专利权)人: | 厦门瑞为信息技术有限公司 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
| 代理公司: | 厦门市首创君合专利事务所有限公司 35204 | 代理人: | 连耀忠;李艾华 |
| 地址: | 361000 福建省厦*** | 国省代码: | 福建;35 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于深度学习的驾驶员安全带佩戴识别方法,包括:通过人脸检测算法识别出输入图像中驾驶员的人脸位置;根据所述人脸位置截取驾驶员躯干区域作为待识别安全带区域;通过训练好的卷积深度学习模型对所述待识别安全带区域进行识别,识别出驾驶员是否佩戴安全带及识别出安全带的位置。本发明的卷积深度学习模型能够在各种环境下识别出驾驶员是否佩戴安全带及识别出安全带的准确位置,其学习效果和鲁棒性会比普通的CNN识别更好,因此能很好的推动汽车智能辅助终端技术的发展,可以为驾驶员安全带识别方面提供更高的识别率。 | ||
| 搜索关键词: | 一种 基于 深度 学习 驾驶员 安全带 佩戴 识别 方法 | ||
【主权项】:
1.一种基于深度学习的驾驶员安全带佩戴识别方法,其特征在于,包括:通过人脸检测算法识别出输入图像中驾驶员的人脸位置;根据所述人脸位置截取驾驶员躯干区域作为待识别安全带区域;通过训练好的卷积深度学习模型对所述待识别安全带区域进行识别,识别出驾驶员是否佩戴安全带及识别出安全带的位置。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门瑞为信息技术有限公司,未经厦门瑞为信息技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201811022463.2/,转载请声明来源钻瓜专利网。





