[发明专利]一种基于TS-LSTM和DNN的微博转发量预测方法有效
| 申请号: | 201810989381.9 | 申请日: | 2018-08-28 |
| 公开(公告)号: | CN109063927B | 公开(公告)日: | 2021-12-07 |
| 发明(设计)人: | 张路桥;穆圣坤;王娟;李飞;石磊 | 申请(专利权)人: | 成都信息工程大学 |
| 主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/00;G06N3/04 |
| 代理公司: | 北京轻创知识产权代理有限公司 11212 | 代理人: | 谈杰 |
| 地址: | 610225 四川省成都*** | 国省代码: | 四川;51 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明属于网络信息处理技术领域,公开了一种基于TS‑LSTM和DNN的微博转发量预测方法,利用用户所发布的所有微博作为源数据,提取出用户10个特征作为输入,微博转发数量量级作为输出,建立TS‑LSTM的预测模型,预测出指定微博的转发指数;根据用户自身影响力、用户粉丝影响力、用户与粉丝的微博特征相似度、微博特征以及预测出的转指定微博的转发指数的特征作为输入,以活跃粉丝是否会转发作为输出,最后统计会转发的数量得出预测目标微博最终转发量级。本发明提出的TS‑LSTM算法并使其与DNN结合对微博转发进行了建模预测,实验论证较以往方法至少有5%的提升。 | ||
| 搜索关键词: | 一种 基于 ts lstm dnn 转发 预测 方法 | ||
【主权项】:
1.一种基于TS‑LSTM和DNN的微博转发量预测方法,其特征在于,所述于TS‑LSTM和DNN的微博转发量预测方法包括:利用用户所发布的所有微博作为源数据,提取出用户活跃粉丝数,关注数,用户是否认证,会员等级,微博发布时间,微博图片数量,微博是否有视频,微博是否有链接,是否包含主题以及微博特相似度的特征作为输入,微博转发数量量级作为输出,建立TS‑LSTM的预测模型,预测出指定微博的转发指数;根据用户自身影响力、用户粉丝影响力、用户与粉丝的微博特征相似度、微博特征以及预测出的转指定微博的转发指数的特征作为输入,以活跃粉丝是否会转发作为输出,最后统计会转发的数量得出预测目标微博最终转发量级。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都信息工程大学,未经成都信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810989381.9/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





