[发明专利]一种多传感器多目标联合检测、跟踪与分类方法有效
申请号: | 201810937812.7 | 申请日: | 2018-08-16 |
公开(公告)号: | CN109214432B | 公开(公告)日: | 2022-02-08 |
发明(设计)人: | 敬忠良;李旻哲 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 上海汉声知识产权代理有限公司 31236 | 代理人: | 胡晶 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种多传感器多目标联合检测、跟踪与分类方法,其特征在于,包括以下步骤:S1:给定的多目标状态的初值,定义新的贝叶斯风险;S2:在所述类别假设集合中的类别假设的条件下对所述多目标状态进行预测,得到多目标的先验状态分布;S3:在类别决策集合条件下,计算k时刻的多目标后验密度,得到后验多目标状态分布;S4:计算不同决策条件下的多目标检测损失、状态估计损失及分类损失;S5:根据所述检测损失、状态估计损失及分类损失,基于最小贝叶斯风险准则得到多目标的估计和分类最优解。该方法易于实现,为多传感器组网环境感知系统提供了重要的技术支持。 | ||
搜索关键词: | 一种 传感器 多目标 联合 检测 跟踪 分类 方法 | ||
【主权项】:
1.一种多传感器多目标联合检测、跟踪与分类方法,其特征在于,包括以下步骤:S1:给定目标类别的识别框架,包含J种目标可能属于的类别,给定的多目标状态的初值,定义新的贝叶斯风险,包括:设置类别决策损失为当多目标类别假设集合为真时决策的损失,设置状态估计损失为条件化的多目标状态估计误差的期望,以及设置检测损失为条件化的多目标数目估计损失,分类损失是当目标类别判断为类别假设集合H而类别假设为类别决策集合D时的损失;S2:在所述类别假设集合H的条件下对所述多目标状态进行预测,得到多目标的先验状态分布,其中类别假设集合H包含所有单个目标的类别假设条件;S3:在类别决策集合D条件下,计算该时刻的多目标后验密度,得到后验多目标状态分布,其中类别决策集合D包含了对所有单个目标的类别决策结果,单个目标的类别决策为判断该目标为第j种目标,其中j∈J;S4:计算不同决策集合条件下的多目标检测损失、状态估计损失及分类损失;S5:根据所述检测损失、状态估计损失及分类损失,基于最小贝叶斯风险准则得到多目标的估计和分类最优解。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810937812.7/,转载请声明来源钻瓜专利网。