[发明专利]一种多任务图像重建方法、装置、设备和介质有效
申请号: | 201810935374.0 | 申请日: | 2018-08-16 |
公开(公告)号: | CN109146813B | 公开(公告)日: | 2022-03-11 |
发明(设计)人: | 邹超洋 | 申请(专利权)人: | 广州视源电子科技股份有限公司 |
主分类号: | G06T5/00 | 分类号: | G06T5/00;G06T5/50 |
代理公司: | 北京品源专利代理有限公司 11332 | 代理人: | 孟金喆 |
地址: | 510530 广东省*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明实施例公开了一种多任务图像重建方法、装置、设备和介质。该方法包括:获取图像训练样本集;将所述图像训练样本集输入多任务图像重建模型进行训练。在模型中设立串联的至少两个残差学习网络分支,同时对分支输出的结果全部纳入到网络的损失函数进行约束,改善了现有技术中,通过同一残差信号对不同的退化模型进行表达的缺陷,通过网络结构适应退化模型的方式,提升复合场景图像重建的效果;并进一步通过低层参数共享的方式减小网络大小,提升网络性能。 | ||
搜索关键词: | 一种 任务 图像 重建 方法 装置 设备 介质 | ||
【主权项】:
1.一种多任务图像重建方法,其特征在于,包括:获取图像训练样本集,其中,每个图像训练样本的源图像包括至少两种训练元素,且至少两种训练元素的残差数据与源图像数据的叠加方式不相同;将所述图像训练样本集输入多任务图像重建模型,以进行模型训练,其中,所述重建模型至少包括串联的至少两个残差学习网络分支,每个残差学习网络输出的残差数据与源图像数据的叠加方式与对应的训练元素相同;所述重建模型的损失函数包括分别与各残差学习网络输出结果对应的子函数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广州视源电子科技股份有限公司,未经广州视源电子科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810935374.0/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序