[发明专利]面向人脸识别的多任务正半定约束度量学习方法有效
| 申请号: | 201810792182.9 | 申请日: | 2018-07-18 |
| 公开(公告)号: | CN109214414B | 公开(公告)日: | 2022-02-22 |
| 发明(设计)人: | 阮奕邦;肖燕珊;郝志峰;刘波 | 申请(专利权)人: | 广东工业大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G06V40/16;G06V10/764;G06V10/774 |
| 代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 林丽明 |
| 地址: | 510006 广东*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明属于人脸识别技术领域,涉及一种面向人脸识别的多任务正半定约束度量学习方法。包括:对多个相似但不同的人脸识别模型同时进行训练;为每个人脸识别度量学习任务构建训练样本二元组;为每个度量学习任务构建一个单任务正半定学习问题;多个单任务度量学习任务转换为多任务形式;利用梯度下降法求解多任务形式的正半定约束优化问题;构建一个面向人脸识别的基于多任务度量学习的K最近邻分类器。本发明能够使同类别人脸图像之间的距离最小化,不同类别人脸图像之间的距离最大化,降低了人脸图像中的特征干扰的影响,可以把不同人脸识别任务的分类模型同时进行学习,利用任务间的相关信息进行分类器的训练,提高人脸识别分类器的预测性能。 | ||
| 搜索关键词: | 面向 识别 任务 正半定 约束 度量 学习方法 | ||
【主权项】:
1.一种面向人脸识别的多任务正半定约束度量学习方法,其特征在于,包括以下步骤:S1.获取多个相似但不同的人脸识别模型的图像,随机抽取每个人脸识别模型的少量图像,以人工标记的方式,对这些抽取出来的少量图像进行标记,赋予类别标签,并且把一个人脸识别任务看成一个度量学习任务;S2.为每个人脸识别任务,即度量学习任务,构建训练样本二元组;S3.为每个度量学习任务构建一个正半定凸优化问题;S4.在S3步骤的单任务正半定约束优化问题的基础上,将多个度量学习任务同时训练,构建一个多任务正半定约束优化问题;S5.采用梯度下降的方法,对S4步骤提出的多任务正半定约束度量学习问题进行求解;S6.根据S5步骤的梯度下降方法的收敛结果,构建一个基于多任务正半定约束度量学习的K最近邻分类器,用于人脸识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810792182.9/,转载请声明来源钻瓜专利网。





