[发明专利]基于直推式半监督深度学习的图像分类方法有效

专利信息
申请号: 201810713131.2 申请日: 2018-06-29
公开(公告)号: CN109034205B 公开(公告)日: 2021-02-02
发明(设计)人: 张玥;龚怡宏;石伟伟;程德;陶小语 申请(专利权)人: 西安交通大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 徐文权
地址: 710049 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明一种基于直推式半监督深度学习的图像分类方法,包括:准备半监督图像数据集,将训练数据划分为训练数据集和验证数据集;训练数据集中其中一部分数据为有标签的数据,另一部分为无标签的数据,验证数据集中为有标签的数据;在有标签的训练数据集上,训练通用的深度神经网络图像分类模型,当训练的模型在验证数据集上达到预期的精度,保存网络模型参数;搭建基于Min‑Max准则的直推式半监督深度卷积神经网络模型,同时使用训练数据集中有标签的数据和无标签的数据循环训练模型,当循环次数达到最大循环次数,保存网络模型参数;使用训练好的模型计算测试图像的标签或测试数据集的识别精度。本发明提出的TSSDL算法,具有很好的可移植性。
搜索关键词: 基于 直推式半 监督 深度 学习 图像 分类 方法
【主权项】:
1.基于直推式半监督深度学习的图像分类方法,其特征在于,包括以下步骤:1)准备半监督图像数据集,将训练数据划分为训练数据集和验证数据集;训练数据集中其中一部分数据为有标签的数据,另一部分为无标签的数据,验证数据集中为有标签的数据;2)在有标签的训练数据集上,训练通用的深度神经网络图像分类模型,当训练的模型在验证数据集上达到预期的精度,保存网络模型参数;3)搭建基于Min‑Max准则的直推式半监督深度卷积神经网络模型,同时使用训练数据集中有标签的数据和无标签的数据循环训练模型,当循环次数达到最大循环次数,保存网络模型参数;4)使用训练好的模型计算测试图像的标签或测试数据集的识别精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810713131.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top