[发明专利]基于形状自适应搜索窗口的非局部均值去噪方法有效

专利信息
申请号: 201810667226.5 申请日: 2018-06-26
公开(公告)号: CN108921800B 公开(公告)日: 2021-01-22
发明(设计)人: 胡金蓉;杨晓东;吴锡;周激流 申请(专利权)人: 成都信息工程大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 成都行之专利代理事务所(普通合伙) 51220 代理人: 唐邦英
地址: 610000 四川省成都*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于形状自适应搜索窗口的非局部均值去噪方法,包括:步骤1:输入噪声图像V,步骤2:计算噪声图像V在水平方向的梯度图像Vx和垂直方向的梯度图像Vy;步骤3:计算噪声图像V所对应的结构张量T(s,σ);步骤4:计算得到当前像素i的形状自适应搜索窗口ASi;步骤5:划分图像块,计算相似性权重值w(i,j);步骤6:计算得到当前像素i去噪后的像素值步骤7:逐行逐列扫描,依次对噪声图像V中的每一像素进行步骤4到步骤6的处理过程,直到处理完所有像素,输出去噪后的图像本发明方法使得到的估计值更接近真实值,对图像中边缘和纹理细节信息具有更好地保护能力,取得的去噪效果优于大小和形状固定搜索窗口的非局部均值去噪方法。
搜索关键词: 基于 形状 自适应 搜索 窗口 局部 均值 方法
【主权项】:
1.基于形状自适应搜索窗口的非局部均值去噪方法,其特征在于,所述方法包括如下步骤:步骤1:输入噪声图像V,其噪声模型为V=U+N,U表示未受噪声污染的图像,N表示均值为0、方差为σ2的高斯白噪声;步骤2:计算噪声图像V在水平方向的梯度图像Vx和垂直方向的梯度图像Vy,当前像素i在水平方向的梯度值和垂直方向的梯度值分别为Vx(i)和Vy(i);步骤3:基于Vx与Vy,计算噪声图像V所对应的结构张量T(s,σ),s和σ为计算结构张量所需高斯平滑滤波器的滤波半径和标准差,当前像素i的结构张量为T(s,σ)(i);步骤4:计算当前像素i的结构张量T(s,σ)(i)对应的特征值和特征向量,得到当前像素i的形状自适应搜索窗口ASi;步骤5:划分图像块,按公式(1)计算当前像素i所在图像块与i的形状自适应搜索窗口ASi内其余像素j所在图像块之间的相似性权重值w(i,j),将当前像素i与自身的相似性权重值w(i,i)设为权重值集合中的最大值:w(i,i)=max({w(i,j)|j∈ASi,j≠i});其中,相似性权重值w(i,j)满足0≤w(i,j)≤1且||v(Pi)‑v(Pj)||2表示像素i与像素j所在图像块的像素灰度值向量v(Pi)与v(Pj)的欧式距离,exp表示指数函数,是归一化系数,h是控制指数函数衰减程度的平滑参数,取值与噪声σ2成正比;步骤6:按公式(2)计算当前像素i的形状自适应搜索窗口ASi内各像素值V(j)及对应相似性权重值w(i,j)的加权平均,得到当前像素i去噪后的像素值步骤7:逐行逐列扫描,依次对噪声图像V中的每一像素进行步骤4到步骤6的处理过程,直到处理完所有像素,输出去噪后的图像
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都信息工程大学,未经成都信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810667226.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top