[发明专利]一种基于相关约束图排序的图像显著性检测方法及装置有效
申请号: | 201810658629.3 | 申请日: | 2018-06-25 |
公开(公告)号: | CN108846404B | 公开(公告)日: | 2021-10-01 |
发明(设计)人: | 江波;关媛媛;汤进;罗斌 | 申请(专利权)人: | 安徽大学 |
主分类号: | G06K9/46 | 分类号: | G06K9/46 |
代理公司: | 合肥市浩智运专利代理事务所(普通合伙) 34124 | 代理人: | 丁瑞瑞 |
地址: | 230000 *** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于相关约束图排序的图像显著性检测方法及装置,方法包括:对待检测图像进行超像素分割,建立一个闭环图模型,进而计算每一个超像素节点的先验信息;提取输入图像的颜色、纹理、位置等信息;获取每一个超像素节点的前景概率值;将前景概率值大于第一预设阈值的节点的集合作为前景种子点集合ind_fore;将前景概率值小于第二预设阈值的节点的集合作为背景种子点集合ind_back;第一预设阈值大于第二预设阈值;使用相关约束图排序的模型计算得到每个超像素节点的前景概率S_f,并使用前景概率值S_f作为最终的显著估计值S_final。应用本发明实施例,可以使显著性检测结果更加准确。 | ||
搜索关键词: | 一种 基于 相关 约束 排序 图像 显著 检测 方法 装置 | ||
【主权项】:
1.一种基于相关约束图排序的图像显著性检测方法,其特征在于,所述方法包括:A:针对每一幅待检测图像,使用简单线性迭代聚类SLIC算法对所述待检测图像进行超像素分割,得到不重叠的超像素块,然后将每一个所述不重叠的超像素块作为节点建立一个闭环图模型,进而计算每一个节点的中心先验信息;B:提取输入图像的颜色、纹理、位置等信息;C:利用MR算法获取每一个节点的前景概率值;D:将前景概率值大于第一预设阈值的节点的集合作为前景种子点集合ind_fore;将前景概率值小于第二预设阈值的节点的集合作为背景种子点集合ind_back;第一预设阈值大于所述第二预设阈值;E:使用相关约束图排序的模型计算得到每个超像素节点的前景概率S_f,并使用前景概率值S_f作为最终的显著估计值S_final。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽大学,未经安徽大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810658629.3/,转载请声明来源钻瓜专利网。