[发明专利]基于迭代均值聚类的深度样本学习方法有效

专利信息
申请号: 201810558766.X 申请日: 2018-06-01
公开(公告)号: CN108877947B 公开(公告)日: 2021-10-15
发明(设计)人: 李勇明;郑源林;王品;颜芳;张成;李新科 申请(专利权)人: 重庆大学
主分类号: G16H50/70 分类号: G16H50/70;G06K9/62
代理公司: 重庆敏创专利代理事务所(普通合伙) 50253 代理人: 陈千
地址: 400044 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于迭代均值聚类的深度样本学习方法,按照以下步骤进行:S1:选择训练数据,并通过N次迭代均值聚类算法处理得到N+1层训练样本子集,N≥1;S2:将每层训练样本子集独立进行回归训练,得到N+1个回归器;S3:选择验证数据,并将验证数据分别送入N+1个回归器中得到N+1个验证结果;S4:基于加权融合机制确定每个回归器对应的最佳权重(w0,w1,…,wN);S5:获取测试数据,并利用N+1个回归器以及对应的最佳权重得到最终的预测结果。其效果是:将学习样本经过多次迭代均值聚类得到不同的训练样本数据集,然后分别进行训练和学习,在相同样本数量的情况下,有效增加了模型的学习能力,提升了分类或预测的准确性。
搜索关键词: 基于 均值 深度 样本 学习方法
【主权项】:
1.一种基于迭代均值聚类的深度样本学习方法,其特征在于按照以下步骤进行:S1:选择训练数据,并通过N次迭代均值聚类算法处理得到N+1层训练样本子集,N≥1;S2:将每层训练样本子集独立进行回归训练,得到N+1个回归器;S3:选择验证数据,先将验证样本与每一层的样本空间进行欧氏距离相似性计算,从而将该验证样本转化为该层样本空间与之最相似的样本,并将这些样本分别送入N+1个回归器中得到N+1个验证结果;S4:基于加权融合机制确定每个回归器对应的最佳权重(w0,w1,…,wN);S5:获取测试数据,先将测试样本与每一层的样本空间进行欧氏距离相似性计算,从而将该测试样本转化为该层样本空间与之最相似的样本,再将这些样本分别送入步骤S2所得的N+1个回归器以及步骤S4所得的每个回归器对应的最佳权重得到最终的预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810558766.X/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top