[发明专利]基于深度学习的场景文本识别方法在审

专利信息
申请号: 201810541773.9 申请日: 2018-05-30
公开(公告)号: CN108898138A 公开(公告)日: 2018-11-27
发明(设计)人: 王林;张晓锋 申请(专利权)人: 西安理工大学
主分类号: G06K9/34 分类号: G06K9/34;G06K9/20;G06K9/62
代理公司: 西安弘理专利事务所 61214 代理人: 王珂瑜
地址: 710048*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的场景文本识别方法,具体按照以下步骤实施:对需要进行场景文本识别的图像P进行处理,利用最大稳定极值区域算法MSER进行文本定位,得到候选文本区域S和该文本区域S的外接矩形G,并进行预处理,将经过预处理后的候选文本区域S输入到训练好的卷积深度置信网络模型中进行特征提取,得到特征矩阵A输入到一个线性的支持向量机中,对候选的文本区域S进行验证,进而过滤掉大量的非文本区域,得到文本区域S′,对其中的字符进行分类识别,然后得到最终的输出。解决了现有技术中存在的自然场景中的文本图像背景复杂、分辨率低和分布随意的问题。
搜索关键词: 场景文本 文本区域 预处理 候选文本 非文本区域 支持向量机 步骤实施 分类识别 极值区域 特征矩阵 特征提取 外接矩形 网络模型 文本图像 自然场景 分辨率 卷积 置信 算法 过滤 文本 验证 图像 输出 学习
【主权项】:
1.一种基于深度学习的场景文本识别方法,其特征在于,具体按照以下步骤实施:步骤1,对需要进行场景文本识别的图像P进行处理,利用最大稳定极值区域算法MSER进行文本定位,得到候选文本区域S和该文本区域S的外接矩形G,步骤2,将步骤1处理得到的定位出的文本区域集合S进行预处理,步骤3,对卷积深度置信网络进行训练,步骤4,将经过步骤2预处理后的候选文本区域S输入到步骤3中得到的训练好的卷积深度置信网络模型中进行特征提取,从候选文本区域S中进行学习更多特征矩阵A,步骤5,将步骤4中学习到的特征矩阵A输入到一个线性的支持向量机中,对候选的文本区域S进行验证,进而过滤掉大量的非文本区域,得到文本区域S′,步骤6,对步骤5中得到文本区域S′中的字符进行分类识别,步骤7,将步骤6.2中分类器输出的字符以及每个字符的出现的概率p,根据现有词典库、上下文、字符排布和每个字符最可能出现的概率p等信息对识别结果进行过滤和排序候选结果,得分最高的候选结果被作为最终的输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安理工大学,未经西安理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810541773.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top