[发明专利]一种基于Spark大数据平台的并行CRF方法有效

专利信息
申请号: 201810500016.7 申请日: 2018-05-23
公开(公告)号: CN108921188B 公开(公告)日: 2020-11-17
发明(设计)人: 胡峰;万志超;王国胤;于洪;张清华;刘柯;郭英杰;周雷;王驰龙 申请(专利权)人: 重庆邮电大学
主分类号: G06K9/62 分类号: G06K9/62;G06N20/00;G06F16/182;G06F16/27
代理公司: 重庆市恒信知识产权代理有限公司 50102 代理人: 刘小红;陈栋梁
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明请求保护一种基于Spark大数据平台的并行CRF算法,涉及数据挖掘技术和自然语言处理技术。首先,读取大规模数据集,进行数据初始化处理,将数据集划分为训练集和测试集。其次,获取特征模板,创建分布式训练数据集RDD和分布式特征模型RDD。再次,利用flatMap特征模型将训练数据转换成特征,通过整合相同的特征得到特征RDD,从而生成并行特征。然后,通过梯度计算更新特征权值,直到所有训练数据RDD更新完成,得到特征权值向量。最后,从HDFS上读取训练好的模型数据和测试数据,将测试数据执行特征抽取操作,利用特征权值向量计算得到最优预测标记序列,将输出存在HDFS中。本发明提高了CRF算法的高迭代效率。
搜索关键词: 一种 基于 spark 数据 平台 并行 crf 方法
【主权项】:
1.一种基于Spark大数据平台的并行CRF算法,其特征在于,包括以下步骤:首先,读取大规模数据集,进行数据初始化处理,将数据集划分为训练集和测试集;其次,将训练集转换为Spark大数据平台的分布式数据集RDD,获取特征模型,将特征模型广播到全节点;再次,利用flatMap特征模型将训练数据转换成特征,过滤无效特征,然后通过整合相同的特征得到未使用的特征,实现生成并行特征;然后,将全节点每一个训练实例转换成特征向量FI和特征索引标量EI,实现训练数据的并行转换和中间数据缓存;通过梯度计算更新特征权值,每次迭代过程判断是否满足终止条件;根据HDFS上存储好的特征模型和测试数据RDD,利用特征权值计算测试数据转换Map,通过最大和置信算法得到预测标记序列。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810500016.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top