[发明专利]一种基于卷积注意力网络的自然场景文本识别方法有效
申请号: | 201810437763.0 | 申请日: | 2018-05-09 |
公开(公告)号: | CN108615036B | 公开(公告)日: | 2021-10-01 |
发明(设计)人: | 谢洪涛;张勇东 | 申请(专利权)人: | 中国科学技术大学 |
主分类号: | G06K9/32 | 分类号: | G06K9/32;G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京凯特来知识产权代理有限公司 11260 | 代理人: | 郑立明;郑哲 |
地址: | 230026 安*** | 国省代码: | 安徽;34 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于卷积注意力网络的自然场景文本识别方法,包括:利用二维卷积CNN作为编码器,提取输入图像的高层语义特征,并输出相应的特征图至解码器;利用一维卷积CNN作为解码器,结合注意力机制来整合编码器生成的高层语义特征与字符级语言模型,产生对应于输入图像的解码字符序列。该方法对于长度为n的序列,使用卷积核为s的CNN建模字符序列,仅需O(n/s)次操作即可得到长期依赖的表达,极大的降低了算法复杂度;此外,由于卷积操作的特征,CNN相比于RNN能够更好并行化,从而发挥GPU等资源的优势,更重要的是,通过叠加卷积层的方式得到的深层模型,可以提高更高层次的抽象表达,从而提高模型的准确率。 | ||
搜索关键词: | 一种 基于 卷积 注意力 网络 自然 场景 文本 识别 方法 | ||
【主权项】:
1.一种基于卷积注意力网络的自然场景文本识别方法,其特征在于,包括:利用二维卷积CNN作为编码器,提取输入图像的高层语义特征,并输出相应的特征图至解码器;利用一维卷积CNN作为解码器,结合注意力机制来整合编码器生成的高层语义特征与字符级语言模型,产生对应于输入图像的解码字符序列。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学技术大学,未经中国科学技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810437763.0/,转载请声明来源钻瓜专利网。