[发明专利]一种基于双摄头的列车车厢人群密度估计方法有效
申请号: | 201810408662.0 | 申请日: | 2018-04-28 |
公开(公告)号: | CN110414301B | 公开(公告)日: | 2023-06-23 |
发明(设计)人: | 陈汉嵘;谢晓华;韦宝典 | 申请(专利权)人: | 中山大学 |
主分类号: | G06V20/52 | 分类号: | G06V20/52;G06V10/764;G06V10/82;G06N3/0464;G06N3/047;G06N3/048;G06N3/08 |
代理公司: | 广州粤高专利商标代理有限公司 44102 | 代理人: | 林丽明 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于双摄头的列车车厢人群密度估计方法,包括:提出多视角人群密度估计网络,该网络由两部分组成,一部分是参数共享的卷积神经网络,另一部分是全连接层,该网络能区分当前列车车厢的人群密度等级。模型训练阶段,使用具有5类密度等级的样本进行迭代优化;模型应用阶段,依照地铁实际运行情况有规律抽样估计。本发明基于深度学习方法估计人群密度,采用卷积神经网络自动学习特征来取代以往手工设计的特征,以提高人群密度估计的准确率和鲁棒性。 | ||
搜索关键词: | 一种 基于 双摄头 列车 车厢 人群 密度 估计 方法 | ||
【主权项】:
1.一种基于双摄头的列车车厢人群密度估计方法,其特征在于,包括如下步骤:S10准备训练样本:建立包含4个参数共享的卷积层和5个全连接层的神经网络,输入同一车厢内相同时刻的两个不同视角的视频帧,训练具有密度等级的标签的样本,其中卷积层用于提取视频的特征向量,全连接层用于将卷积层所提取出的特征向量按密度等级进行分类;S20神经网络训练:数次迭代优化训练神经网络;S30应用阶段:截取双摄头拍摄的当前列车车厢的视频帧分别输入至优化后的神经网络,得到当前列车车厢的图像分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810408662.0/,转载请声明来源钻瓜专利网。
- 上一篇:虹膜特征的合成方法和装置
- 下一篇:非接触式的瞳距测量方法及系统