[发明专利]一种基于随机森林的多参数零件表面粗糙度学习方法有效
| 申请号: | 201810223488.2 | 申请日: | 2018-03-19 |
| 公开(公告)号: | CN108428231B | 公开(公告)日: | 2022-04-26 |
| 发明(设计)人: | 陈苏婷;史云姣;张艳艳 | 申请(专利权)人: | 南京信息工程大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/45;G06V10/764;G06K9/62 |
| 代理公司: | 南京纵横知识产权代理有限公司 32224 | 代理人: | 董建林 |
| 地址: | 210044 *** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种基于随机森林的多参数零件表面粗糙度学习方法,首先,采集散斑图像的训练样本集和测试样本,采用巴特沃斯滤波器对图像进行预处理,对散斑图像进行特征研究,实现了多特征提取,找出特征与粗糙度间的单调性,并构建基于随机森林的强分类器;然后,引入互信息量学习特征权重,并结合相关性系数和随机森林学习参数建立粗糙度学习函数;最后,利用学习好的粗糙度函数对测试样本进行粗糙度测量。该方法建立了一种同时学习工艺类型与粗糙度值的新模型,突破了现有方法中对不同工艺零件需建立多个测量粗糙度值模型的局限性,为粗糙度测量提供了新思路,并通过实验验证了新算法的有效性和实用性。 | ||
| 搜索关键词: | 一种 基于 随机 森林 参数 零件 表面 粗糙 学习方法 | ||
【主权项】:
1.一种基于随机森林的多参数零件表面粗糙度学习方法,其特征在于:包括如下步骤,步骤一,样本图像采集,由CCD相机采集经激光照射在物体表面产生的散斑场,并通过图像采集卡传输到工作站;步骤二,图像预处理,加强图像阴影部分的细节特征;步骤三,多特征提取,即运用空间平均法提取光学特征,灰度共生矩阵法提取均值、方差、相关性、熵、二阶矩、惯性矩特征,Tamura纹理特征法提取纹理特征;步骤四,将每一特征量化后作为一个属性加入随机森林和决策树算法学习,根据分类属性信息增益最大原则构建随机森林分类器,用以检测分类零件工艺类型;步骤五,通过对散斑图像特征研究,实现了多特征提取,找出特征与粗糙度之间的单调性;然后将特征归一化,引入互信息量学习特征权重,并结合相关性系数和随机森林学习参数建立粗糙度学习函数;步骤六,利用学习好的分类器和粗糙度函数对待测零件进行检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810223488.2/,转载请声明来源钻瓜专利网。





