[发明专利]一种优化神经网络的风机噪音预测方法有效
申请号: | 201810201400.7 | 申请日: | 2018-03-12 |
公开(公告)号: | CN108428012B | 公开(公告)日: | 2022-03-01 |
发明(设计)人: | 刘梦安;杨奇;阳吉初;翟方志;侯志泉;屈小章 | 申请(专利权)人: | 株洲联诚集团控股股份有限公司 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06N3/02 |
代理公司: | 长沙七源专利代理事务所(普通合伙) 43214 | 代理人: | 郑隽;吴婷 |
地址: | 412001 *** | 国省代码: | 湖南;43 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种优化神经网络的风机噪音预测方法,本发明主要通过对输入神经元数目和隐藏层神经元数目的联合控制提高风机噪音预测精度和神经网络的泛化能力。本发明基于相关性分析将风机样本中的输入参数对输出参数影响的重要性进行排序,根据训练精度和预测精度确定输入层神经元数目范围与最佳输入层神经元数目。利用相关性分析有效减少输入神经元数目,降低了最优神经网络结构的构建难度。本发明利用最佳隐藏层神经元数目来确定最优神经网络结构,有效避免了过拟合和欠拟合,提高训练精度的同时也改善了预测精度和泛化能力。 | ||
搜索关键词: | 一种 优化 神经网络 风机 噪音 预测 方法 | ||
【主权项】:
1.一种优化神经网络的风机噪音预测方法,其特征在于,包括步骤:S1.采集风机性能参数和几何参数;S2.分析风机性能参数现状;S3.确定输入层神经元和输出层神经元:将输入参数对输出参数的影响重要性进行排序,根据训练精度和预测精度确定输入层神经元数目范围与最佳输入层神经元数目;S4.确定训练神经网络的训练样本和测试样本;S5.确定训练神经网络隐藏层神经元的数目、训练次数以及最佳结果的保存:根据输入层神经元数目、训练误差合适、预测误差最优准则自适应确定最佳隐藏层神经元数目;S6.利用训练并保存好的神经网络参数进行风机噪音预测;S7.得到预测结果,从中选出最理想预测结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于株洲联诚集团控股股份有限公司,未经株洲联诚集团控股股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810201400.7/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理