[发明专利]一种神经网络处理器和采用其执行的卷积运算方法有效

专利信息
申请号: 201810175352.9 申请日: 2018-03-02
公开(公告)号: CN108171328B 公开(公告)日: 2020-12-29
发明(设计)人: 韩银和;闵丰;许浩博;王颖 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06N3/063 分类号: G06N3/063
代理公司: 北京泛华伟业知识产权代理有限公司 11280 代理人: 王勇
地址: 100190 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种卷积运算方法和基于该方法的神经网络处理器。该卷积运算方法包括:获取卷积域内待执行卷积运算的权重向量和神经元向量,其中所述权重向量和所述神经元向量具有相同的维度;从所述权重向量查找有效权重并从所述神经元向量查找有效神经元,匹配获得有效元素子组,其中,每一个有效元素子组包括一个有效权重以及与该有效权重对应的一个有效神经元,所述有效权重是非零权重,所述有效神经元是非零神经元;针对所述有效元素子组执行卷积运算。利用本发明的方法和神经网络处理器能够降低卷积计算量,从而提高计算效率。
搜索关键词: 一种 神经网络 处理器 采用 执行 卷积 运算 方法
【主权项】:
1.一种卷积运算方法,包括以下步骤:

步骤1:获取卷积域内待执行卷积运算的权重向量和神经元向量,其中所述权重向量和所述神经元向量具有相同的维度;

步骤2:从所述权重向量查找有效权重并从所述神经元向量查找有效神经元,匹配获得有效元素子组,其中,每一个有效元素子组包括一个有效权重以及与该有效权重对应的一个有效神经元,所述有效权重是非零权重,所述有效神经元是非零神经元;

步骤3:针对所述有效元素子组执行卷积运算。

2.根据权利要求1所述的方法,其中,步骤2包括:

步骤21:生成反映所述权重向量中各元素是否为零值的权重有效性标识编码并生成反映所述神经元向量中各元素是否为零值的神经元有效性标识编码;

步骤22:根据所述权重有效性标识编码和所述神经元有效性标识编码匹配获得用于查找所述有效元素子组的有效性匹配编码。

3.根据权利要求2所述的方法,其中,

通过将非零权重和非零神经元标记为1,将零值权重和零值神经元标记为0获得所述权重有效性标识编码和所述神经元有效性标识编码;

将所述权重有效性标识编码和所述神经元有效性标识编码进行逻辑与操作获得所述有效性匹配编码。

4.一种神经网络处理器,包括:

用于获取卷积域内待执行卷积运算的权重向量和神经元向量的向量获取单元,其中,所述权重向量和所述神经元向量具有相同的维度;

用于从所述权重向量查找有效权重并从所述神经元向量查找有效神经元,匹配获得有效元素子组的向量匹配单元,其中,每一个有效元素子组包括一个有效权重以及与该有效权重对应的一个有效神经元,所述有效权重是非零权重,所述有效神经元是非零神经元;

用于针对所述有效元素子组执行卷积运算的卷积运算单元。

5.根据权利要求4所述的神经网络处理器,其特征在于,所述向量匹配单元还用于:

生成反映所述权重向量中各元素是否为零值的权重有效性标识编码并生成反映所述神经元向量中各元素是否为零值的神经元有效性标识编码;

根据所述权重有效性标识编码和所述神经元有效性标识编码匹配获得用于查找所述有效元素子组的有效性匹配编码。

6.根据权利要求5所述的神经网络处理器,其特征在于,所述向量匹配单元通过执行以下过程获得所述有效性匹配编码:

将非零权重和非零神经元标记为1,将零值权重和零值神经元标记为0获得所述权重有效性标识编码和所述神经元有效性标识编码;

将所述权重有效性标识编码和所述神经元有效性标识编码进行逻辑与操作获得所述有效性匹配编码。

7.根据权利要求4至6任一项所述的神经网络处理器,其特征在于,还包括与所述向量匹配单元和所述卷积运算单元相连的有效元素子组暂存单元,其用于接收所述向量匹配单元输出的所述有效元素子组并将其输出至所述卷积运算单元。

8.根据权利要求4至6中任一项所述的神经网络处理器,其特征在于还包括控制单元,其用于控制所述神经网络处理器中数据的传递过程和传递数量。

9.一种计算机可读存储介质,其上存储有计算机程序,其中,该程序被处理器执行时实现根据权利要求1至3中任一项所述方法的步骤。

10.一种计算机设备,包括存储器和处理器,在所述存储器上存储有能够在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1至3中任一项所述的方法的步骤。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201810175352.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top