[发明专利]基于深度强化学习的人体骨架行为识别方法及装置有效
申请号: | 201810083816.3 | 申请日: | 2018-01-29 |
公开(公告)号: | CN108304795B | 公开(公告)日: | 2020-05-12 |
发明(设计)人: | 鲁继文;周杰;唐彦嵩;田毅 | 申请(专利权)人: | 清华大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/62;G06N3/04 |
代理公司: | 北京清亦华知识产权代理事务所(普通合伙) 11201 | 代理人: | 张润 |
地址: | 10008*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度强化学习的人体骨架行为识别方法及装置,其中,方法包括:通过对训练集中的每一段视频进行均匀采样得到帧数固定的视频,以训练图卷积神经网络;在图卷积神经网络的参数固定之后,通过图卷积神经网络训练萃取帧网络,以得到满足预设条件的代表帧;通过满足预设条件的代表帧更新图卷积神经网络;获取目标视频,并对目标视频进行均匀采样,以将采样得到的帧送入萃取帧网络得到关键帧;将关键帧送入更新后的图卷积神经网络,以得到行为的最终类别。该方法可以加强挑选出来帧的判别性,去除冗余信息,提高识别性能,降低测试阶段计算量,同时可以充分利用人体骨骼的拓扑关系,来提高行为识别的性能。 | ||
搜索关键词: | 基于 深度 强化 学习 人体 骨架 行为 识别 方法 装置 | ||
【主权项】:
1.一种基于深度强化学习的人体骨架行为识别方法,其特征在于,包括以下步骤:通过对训练集中的每一段视频进行均匀采样得到帧数固定的视频,以训练图卷积神经网络;在所述图卷积神经网络的参数固定之后,通过所述图卷积神经网络训练萃取帧网络,以得到满足预设条件的代表帧;通过所述满足预设条件的代表帧更新所述图卷积神经网络;获取目标视频,并对所述目标视频进行均匀采样,以将采样得到的帧送入所述萃取帧网络得到关键帧;以及将所述关键帧送入所述更新后的图卷积神经网络,以得到行为的最终类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810083816.3/,转载请声明来源钻瓜专利网。
- 上一篇:作弊自动识别方法和装置
- 下一篇:一种智能杂草警示方法及系统