[发明专利]一种基于跟踪学习检测的目标跟踪优化方法有效
| 申请号: | 201810079102.5 | 申请日: | 2018-01-26 |
| 公开(公告)号: | CN108320301B | 公开(公告)日: | 2022-03-18 |
| 发明(设计)人: | 赵亦工;李长桂 | 申请(专利权)人: | 西安电子科技大学 |
| 主分类号: | G06T7/277 | 分类号: | G06T7/277 |
| 代理公司: | 西安睿通知识产权代理事务所(特殊普通合伙) 61218 | 代理人: | 惠文轩 |
| 地址: | 710071*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: |
本发明公开了一种基于跟踪学习检测的目标跟踪优化方法,属于计算机视觉领域,其主要思路为:确定L帧灰度图像视频帧序列,每帧灰度图像视频帧序列中分别包含一个跟踪目标;第1帧灰度图像视频帧序列中的跟踪目标位置已知,其余L‑1帧灰度图像视频帧序列中的跟踪目标位置未知;t∈{1,2,…,L},t的初始值为1;在第t帧目标限定框 |
||
| 搜索关键词: | 一种 基于 跟踪 学习 检测 目标 优化 方法 | ||
【主权项】:
1.一种基于跟踪学习检测的目标跟踪优化方法,其特征在于,包括以下步骤:步骤1,获取L帧用于跟踪的彩色图像视频帧序列,对所述L帧用于跟踪的彩色图像视频帧序列分别进行灰度转换,进而得到L帧灰度图像视频帧序列,每帧灰度图像视频帧序列都为N行M列,且每帧灰度图像视频帧序列中分别包含一个跟踪目标;第1帧灰度图像视频帧序列中的跟踪目标位置已知,其余L‑1帧灰度图像视频帧序列中的跟踪目标位置未知;其中,L、N、M分别为大于0的正整数;初始化:令t表示第t帧灰度图像视频帧序列,t∈{1,2,…,L},t的初始值为1;确定第1帧目标限定框
和第1帧灰度图像视频帧序列的正负样本库L1;步骤2,在第t帧目标限定框
中选取
个均匀跟踪点,并根据第t帧灰度图像视频帧序列的正负样本库Lt,在第t+1帧灰度图像视频帧序列中得到第t+1帧灰度图像视频帧序列的跟踪阶段限定框tbt+1;步骤3,从第t+1帧灰度图像视频帧序列中获得第t+1帧灰度图像视频帧序列的检测阶段限定框dbt+1;步骤4,根据第t+1帧灰度图像视频帧序列的跟踪阶段限定框tbt+1和第t+1帧灰度图像视频帧序列的检测阶段限定框dbt+1,得到第t+1帧目标限定框,进而确定第t+1帧跟踪目标的最终位置;步骤5,令t的值加1,执行步骤2至步骤4,直到得到第2帧跟踪目标的最终位置至第L帧跟踪目标的最终位置,并记为基于跟踪学习检测的目标跟踪优化结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810079102.5/,转载请声明来源钻瓜专利网。





