[发明专利]一种基于深度学习的人脸特征提取方法在审
申请号: | 201810052447.1 | 申请日: | 2018-01-19 |
公开(公告)号: | CN108108723A | 公开(公告)日: | 2018-06-01 |
发明(设计)人: | 胡钟山 | 申请(专利权)人: | 深圳市恩钛控股有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;G06N3/08 |
代理公司: | 深圳市汇信知识产权代理有限公司 44477 | 代理人: | 赵英杰 |
地址: | 518000 广东省深圳市南山区粤*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度学习的人脸特征提取方法,包括以下步骤:步骤1:初始化输入图像尺寸为W*W,卷积核大小为K*K,步长为S,填充大小为P,输出个数为NUM和各层的权重为θi;步骤2:准备人脸图像数据;步骤3:构建具有46层的深度学习的人脸特征提取网络;步骤4:将准备的人脸图像数据输入到步骤3中构建的人脸特征提取网络中,训练softmax分类器;步骤5:启动人脸特征提取网络,进行网络训练:网络训练T时间后,通过微调求对人脸特征提取网络进行精度提升,最终出来的权重系统θ,即为所求模型;通过该模型对未知样本进行特征提取,流程结束。 | ||
搜索关键词: | 人脸特征提取 人脸图像数据 网络训练 构建 网络 精度提升 流程结束 权重系统 输入图像 特征提取 初始化 分类器 卷积核 权重 微调 学习 填充 样本 输出 | ||
【主权项】:
1.一种基于深度学习的人脸特征提取方法,其特征在于,包括以下步骤:步骤1:初始化输入图像尺寸为W*W,卷积核大小为K*K,步长为S,填充大小为P,输出个数为NUM和各层的权重为θi ;步骤2:准备人脸图像数据;步骤3:构建具有46层的深度学习的人脸特征提取网络;步骤4:将准备的人脸图像数据输入到步骤3中构建的人脸特征提取网络中,训练softmax分类器;步骤5:启动人脸特征提取网络,进行网络训练:网络训练T时间后,通过微调求对人脸特征提取网络进行精度提升,最终出来的权重系统θ,即为所求模型;通过该模型对未知样本进行特征提取,流程结束。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市恩钛控股有限公司,未经深圳市恩钛控股有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810052447.1/,转载请声明来源钻瓜专利网。