[发明专利]一种针对图像语义分割的端到端差异网络学习方法有效
申请号: | 201810048064.7 | 申请日: | 2018-01-18 |
公开(公告)号: | CN108319972B | 公开(公告)日: | 2021-11-02 |
发明(设计)人: | 杨明;胡太 | 申请(专利权)人: | 南京师范大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/34;G06N3/04;G06N3/08 |
代理公司: | 南京经纬专利商标代理有限公司 32200 | 代理人: | 葛潇敏 |
地址: | 210023 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种针对图像语义分割的端到端差异网络学习方法,包括如下步骤:使用Caffe深度学习框架分别搭建主网络结构和完整网络结构,其中,主网络结构用于生成粗分割模型和训练集中每个图像的小目标区域,完整网络用于最终的图像语义分割;使用训练集的部分数据训练主网络的粗模型,通过粗模型得到的分割结果与真实分割图比较得到粗模型的误分区域;将得到的粗模型作为初始化参数训练完整网络模型得到最终的分割结果,建立图像语义分割模型;分割模型测试,根据步骤3得到的图像语义分割模型分割所有的测试图像。此种方法可对小目标区域较为敏感,同时也能在一定程度上解决边缘模糊和相似部位误判问题。 | ||
搜索关键词: | 一种 针对 图像 语义 分割 端到端 差异 网络 学习方法 | ||
【主权项】:
1.一种针对图像语义分割的端到端差异网络学习方法,其特征在于包括如下步骤:步骤1,使用Caffe深度学习框架分别搭建主网络结构和完整网络结构,其中,主网络结构用于生成粗分割模型和训练集中每个图像的小目标区域,完整网络用于最终的图像语义分割;步骤2,使用训练集的部分数据训练主网络的粗模型,通过粗模型得到的分割结果与真实分割图比较得到粗模型的误分区域;步骤3,将步骤2得到的粗模型作为初始化参数训练完整网络模型得到最终的分割结果,建立图像语义分割模型;步骤4,分割模型测试,根据步骤3得到的图像语义分割模型分割所有的测试图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京师范大学,未经南京师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810048064.7/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序