[发明专利]一种基于低维时空特征提取与主题建模的肢体冲突行为检测方法有效

专利信息
申请号: 201711366304.X 申请日: 2017-12-18
公开(公告)号: CN108108688B 公开(公告)日: 2021-11-23
发明(设计)人: 纪刚;周粉粉;周萌萌;安帅;商胜楠;于腾 申请(专利权)人: 青岛联合创智科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/46;G06K9/62;G06T7/269;G06T7/254
代理公司: 青岛高晓专利事务所(普通合伙) 37104 代理人: 张世功
地址: 266200 山东省*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于视频监控技术领域,涉及一种种基于低维时空特征提取与主题建模的肢体冲突行为检测方法,检测的步骤为需要先定义一个词本,再量化对象的像素位置、描述场景中的前景目标的大小、确定前景像素的运动情况,通过上述步骤后完成完整的词本建立和语料库的建立,通过上述计算方式来进行肢体冲突行为的判断,该方法结合了低维的数据特征表示和基于模型的复杂场景分析,利用动作中人体位置信息的变化,学习出一个与身体部位无关的整体运动模型,通过分析整体运动模型,将检测到的结果与模型中的参数进行对比,进而判断出人体运动状态,本发明与现有技术相比,该方法设计构思巧妙,检测原理科学,检测方式简单并且检测精确度高,极具市场前景。
搜索关键词: 一种 基于 时空 特征 提取 主题 建模 肢体 冲突 行为 检测 方法
【主权项】:
1.一种基于低维时空特征提取与主题建模的肢体冲突行为检测方法,其特征在于具体检测方法按照如下步骤进行:S1、词本的定义先从原始的监控视频数据中提取出符合人类认知的语义理解,通过本发明的算法设计自动分析理解视频数据,分析过程分为前景目标的提取、目标特征表示和行为分析归类,该方法基于LDMA模型用于视频监控中人体异常行为检测,对视频中每个对象的像素位置进行描述,对每个像素抽取特征向量,该特征向量包含每一像素的位置、运动的速度和方向、隶属于目标对象的大小,最终形成视觉信息词本和文档,并定义一个有效的词本,作为涵盖监控视频中的像素可查询的字典;S2、量化对象的像素位置在视频监控获得的视频中,行为基本是以行为发生者的位置为特征的,因此,本发明将位置信息考虑到词本的构建中,把视频中对象的像素位置量化成不重叠的10*10的细胞元中,对于M×N的视频对象,因此能够获得M/10×N/10个细胞元组;S3、描述场景中的前景目标的大小为了准确表示视频对象中前景目标,本发明把每一个前景像素和该像素属于何种前景目标联系起来,在视频监控获得的视频数据中,观察到的前景框基于它们的大小能够划分为两类,一类为小的前景框,主要是行人,一类是大的前景框,主要包括车辆或者一群行人;因此,本发明使用K-means聚类来分类前景框的大小,从而得到每个像素隶属的前景目标,取K-means中的聚类数k=2,最终使用聚类标号1和2来描述场景中的目标的大小,即1为小目标,2为大目标;S4、确定前景像素的运动情况对于视频监控中的场景,分析的内容针对于前景目标,需要进行背景减除得到前景像素,并对得到的每个前景像素根据Lucas-Kanade光流算法求解该像素的光流信息,通过设定光流向量大小的阈值来界定前景静态像素(静态标签)和动态的像素;再把动态的像素量化成具有运动方向、轨迹、位置、速度4种运动描述词描述的运动状态,因此,对于检测到的前景像素,有具有运动方向、轨迹、位置、速度和静止5种可能的运动描述词确定前景像素的运动情况;S5、定义视频序列和像素点将视频监控中的场景下的视频序列记为分割成若干视频序列,其中,为分割的第m个视频片段,把视频序列看做当前的语料库对应语料库中的文档(document),在视频片段中,定义像素点为词(word),每个词对应一个主题(topic),则随着时间t的变化,在中,各个词主题向其它主题产生转移或自转移状态,由MCMC(Markov Chain MonteCarlo)特性可知,这种特性在经过一段时间后会达到一种平稳分布;S6、建立词本根据上述步骤所述对于M×N的视频对象每个像素的位置有M/10×N/10种表示,运动形式有5种描述,大目标和小目标有两种表述,能够得到的词的表达为M/10×N/10×5×2种形式,即对于某个前景像素,存在种描述方式,但在某一时刻下,每个像素的运动信息和隶属的目标具有独立性,即对于视频片段,随着时间t的变化形成的不同的主题,其主题应该是独立分别获取的,因此,每个位置(location)能够采用联合特征(运动,大小)来表示将运动和大小的特征进行级联,然后作为每个细胞元的词的集合,用Vc表示,这就表示在构建一个视频段时,一个像素要对本位置同时提供两种特征词——运动和隶属的目标大小,则最终词本能够表示成M/10×N/10×(5+2)形式;因此,一个像素的特征词可以定义成wc,aC为细胞元位置,a为运动形式和大小的联合特征;S7、语料库的建立将监控视频分成短的若干个视频段,每个视频段作为一篇文档,视频段中随时间t变化的像素点表示成文档中出现的词以及这一系列词表示的主题内容,再以每个像素生成的词本为依据,若语料库中的总的词频为N,则在所有的N个词中,如果关注每个词vi的发生频率次数ni,那么则语料库中每一语料的概率为:其中,P(n)指语料库中每个词发生的频率次数的概率;那么,对于每一个具体的主题并由该主题产生语料库中词汇的概率则最终语料库产生的概率就是对每一个主题
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于青岛联合创智科技有限公司,未经青岛联合创智科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711366304.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

tel code back_top