[发明专利]一种基于改进SVM算法的交通状态预测方法有效
申请号: | 201711352952.X | 申请日: | 2017-12-15 |
公开(公告)号: | CN108171365B | 公开(公告)日: | 2022-04-08 |
发明(设计)人: | 於东军;闫贺;戚湧 | 申请(专利权)人: | 南京理工大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/26;G08G1/01 |
代理公司: | 南京理工大学专利中心 32203 | 代理人: | 马鲁晋 |
地址: | 210094 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于改进SVM算法的交通状态预测方法,具体步骤为:对历史交通数据样本集进行预处理,将预处理后的样本数据分割成k个不相交的子样本,从k个不相交的子样本中选取一个子样本作为测试数据集,其它k‑1个子样本作为训练数据集;用改进的SVM模型在训练数据集上进行模型训练,并不断优化改进的SVM模型,生成最优的改进的SVM预测模型;输入测试数据集至最优的改进的SVM预测模型,从而获得预测结果。本发明利用改进的SVM算法可以有效地缓和数据中异常值的影响,增强模型的鲁棒性,并提高其泛化能力,提高了预测精度。 | ||
搜索关键词: | 一种 基于 改进 svm 算法 交通 状态 预测 方法 | ||
步骤1、对历史交通数据样本集进行预处理,具体为对交通数据样本集进行归一化处理,并根据道路中各路段的平均速度,对道路交通状态划分等级,每个等级的样本为一类样本,共m类样本;
步骤2、将归一化后的样本数据分割成k个不相交的子样本,从k个不相交的子样本中选取一个子样本作为测试数据集,其它k‑1个子样本作为训练数据集;
步骤3、构建改进的SVM模型,用改进的SVM模型在训练数据集上进行模型训练,在训练过程中通过交叉验证的方法获得最优参数c1m和c2m;
步骤4、更新改进的SVM模型的增广向量确定最优增广向量zm,生成最优的改进的SVM预测模型;
步骤5、输入测试数据集至最优的改进的SVM预测模型,获得一组交通状态预测精度;
步骤6、依次从k个不相交的子样本中选取一个子样本作为测试数据集,其它k‑1个作为训练数据集,重复步骤3、4,直至所有子样本都作为测试数据集和训练数据集被训练为止,总共得到k组交通状态预测精度,对k组交通状态预测精度求平均值,该平均值为最终的交通状态预测结果。
2.根据权利要求1所述的基于改进SVM算法的交通状态预测方法,其特征在于,步骤1中对交通数据样本进行归一化处理的具体公式为:di=(xi‑min(X))/(max(X)‑min(X))
式中,X=(x1,x2,...,xn)∈Rn,表示交通数据样本集,xi(i=1,2,...,n)表示交通数据样本集中的第i个数据样本,min(X)表示交通数据样本集中最小的数据样本,max(X)表示交通数据样本集中最大的数据样本,di表示归一化后的数据样本。
3.根据权利要求1所述的基于改进SVM算法的交通状态预测方法,其特征在于,步骤1中对道路交通状态划分等级的具体方法为:按照城市道路交通规划设计规范,以不高于15分钟为统计间隔,计算道路中各路段的平均速度,并将道路交通状态划分为五级,包括畅通、基本畅通、轻度拥堵、中度拥堵、严重拥堵。
4.根据权利要求1所述的基于改进SVM算法的交通状态预测方法,其特征在于,步骤2中k为5。5.根据权利要求1所述的基于改进SVM算法的交通状态预测方法,其特征在于,步骤3中构建的改进的SVM模型具体为:其中,||·||1表示L1范数距离,c1m和c2m是惩罚系数,e1m和e2m是相应维度的单位列向量,qm是松弛变量,矩阵Am表示第m类样本,矩阵Bm表示其余的m‑1类样本,wm表示第m类样本的权向量,bm表示第m类样本的偏差。
6.根据权利要求1所述的基于改进SVM算法的交通状态预测方法,其特征在于,步骤4中更新改进的SVM模型的增广向量步骤4.1、设置迭代次数p=0,初始化增广向量根据
计算对角矩阵
及
其中,
步骤4.2、根据对角矩阵及
和最优参数c1m及c2m计算增广向量
具体计算公式为:
其中,
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京理工大学,未经南京理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201711352952.X/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理